
Probabilistic Process Algebra

Probabilistic Process Algebra

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr. R.A. van Santen,
voor een commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op dinsdag 26 november 2002 om 16.00 uur

door

Suzana Andova

geboren te Veles, Macedonië

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. J.C.M. Baeten
en
prof.dr. C.A. Middelburg

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Andova, Suzana

Probabilistic process algebra / by Suzana Andova. - Eindhoven :
Technische Universiteit Eindhoven, 2002.
Proefschrift. - ISBN 90-386-0592-7
NUR 993
Subject headings : process algebra
CR Subject Classification (1998) : F.3.2, F.1.2, D.2.4, D.1.3

IPA Dissertation Series 2002-15.

This thesis has been supported by the Netherlands Computer Science Research Foundadtion (SION)
with financial support from the Netherlands Organization for Scientific Research (NWO) whitin the
scope of the project NWO/SION 612-10-000. It has been carried out under the auspicies of the
Institute for Programming Research and Algorithmics (IPA).

Dedicated to Danilo and Sofia-Ana

Acknowledgements

My interest in Process Algebra started about seven years ago. While I was still at the Faculty of
Natural Sciences and Mathematics in Macedonia, on several occasions I met and had discussions
with Jos Baeten. And it became very clear to me that I would like to do a doctoral studies in this field.
So, I decided to move to the Netherlands. I have never regretted that. The next four years, that I spent
at the University of Eindhoven as a Ph.D. student in the Formal Methods Group, was a period of hard
work, of learning and exploring the beauty of formal methods and concurrency theory, and of course,
a period of a great fun and an exploration of the Dutch culture. Many people have contributed to my
life or to my research in different ways. Here I mention some of them.

First of all, I would like to thank my promotor Jos Baeten. My first contact ever with Process
Algebra was his famous “blue book”. But during these four years I had a great opportunity to work
with him and learn from him much more than I could ever read in any book. No matter how busy he
was, he would always find time to listen and discuss my problems and provide new ideas whenever I
got stuck. It happened all the time that I would walk into his office with a long list of axioms and in
only a day or two I would get his comments and suggestions back. Also I would like to thank him for
having such a great understanding and for the support he gave me during some difficult times.

Next I would like to thank Smile Markovski and Gjorgji Čupona, two very important persons in
my life. I had the pleasure to be their student, and later, after my graduation, to work with them on
different projects. Their passion for research and enthusiasm during very difficult times in Macedonia,
made a very deep impression on me and left lasting marks on my personality. I also thank them for
organizing many interesting seminars where I “made my first steps” in the world of science and
research.

This thesis would have not been the same without the help of my second promotor Kees Middel-
burg. I thank him for the careful reading of all my writings and for teaching me how to write papers.
I thank Joost-Pieter Katoen and Jan Bergstra who reviewed the manuscript before it was submitted.
Their suggestions and comments helped to improve considerably this dissertation, specially in the pre-
sentation aspects. In particular Joost-Pieter made several remarks that helped me to correct mistakes
that, though they did not seem very important, they could have annoyed and misled the reader.

An important source of feedback on my ideas I found in the members of PROMISE (PROba-
bilistic Methods In Software Engineering) during our meetings. PROMISE was a cooperation set up
among people in the Netherlands working on probabilistic systems that provided an excellent forum
for informal presentations and discussions. Hence, Mariëlle Stoelinga , Pedro D’Argenio, Holger
Hermanns, Joost-Pieter Katoen, Erik de Vink, Jerry den Hartog, Perry de Groot, Frits Vaandrager
and Ed Brinksma thank you for many interesting and enjoyable meetings and fruitful discussions. I
also enjoyed the regular meetings of the PROMACS-project (Probabilistic Methods for the Analysis
of Continuous Systems) where I learned about probabilistic GSOS, categorical coalgebra and game
theory. Many thanks go to Jan Rutten, Jos Baeten, Jaco de Bakker, Falk Bartels and Alexandru Bal-
tag. I am also grateful to Rob van Glabbeek, Roberto Segala, Wan Fokkink, Pedro D’Argenio, Jan

vii

Acknowledgements

Friso Groote, Onno Boxma and Chris Verhoef for some productive discussions and for their useful
suggestions on several problems I was stuck with.

Not only important for productive work but also desirable to keep enjoying it, is to be part of
a research group in which people get along both socially and scientifically. The Formal Methods
Group provided an excellent atmosphere for work and also for joy. Special thanks go to my office
mates: Tim, Georgi and Martijn and also to the members of the RISK group: Marceltje, Ana, Dragan
and Victor. I thank all of you for many enjoyable coffee breakes, lunches, dinners and late-night
risk games. Without your help and support my life in Eindhoven would have been very tough and
miserable. Unique thanks go to Tim and Georgi. I could not imagine better office mates. With
their stupid jokes, they always succeeded to cheer me up even in the most difficult moments. Our
discussions and the sketches of probabilistic bisimilar graphs on the white board in the office with
the sign “Do not erase”, encouraged me and put me back on track many times. Furthermore, they
helped me with final arrangements for this thesis, Tim translated the summary into Dutch and Georgi
arranged things with the printer. I thank my other colleagues of the Formal Methods Group, Jos, Kees,
Erik, Michel, Rob, Andre, Roel, Sjouke, Ruurd, Jerry, Gia, Elize, Anne-Meta, Francien and Tijn for
enjoyable gatherings organized in different occasions within the group.

During these years I had the greatest pleasure to have Nino and Olga as my friends. We have spent
so much time together that I do not remember how my life was before I met them. Also a big thanks
to my other friends Helene, Rosane, Fred, Eric, Carlos, Bart, Tatjana who make my life interesting in
Eindhoven.

I am also grateful to the members of the Institute of Informatics, at the Faculty of Natural Sciences
and Mathematics in Skopje for giving me a leave and for taking over my teaching obligations within
that period. I would like to thank Ed Brinksma, Joost-Pieter Katoen and Holger Hermanns for offering
me a job at the University of Twente and also to my colleagues from the Formal Methods and Tools
Group for helping me in settling in Enschede.

My mother, Vera, deserves endless thanks for her unconditional love and support, in spite for me
being away from her.

My final grateful thanks go to my husband Danilo for his unconditional love and never ceasing
support and understanding. His telephone calls, visits and e-mail messages kept me strong during
these difficult years for the both of us.

Contents

Acknowledgements vii

Contents ix

List of tables xiii

1 Introduction 1
1.1 Formal methods . 1
1.2 Probability . 2

1.2.1 Introducing probabilities in formal methods 3
1.3 Time . 4
1.4 Main results . 4
1.5 Outline of the thesis . 5
1.6 Related work . 5

2 Preliminaries from Process Algebra 9
2.1 Process Algebra . 9

2.1.1 Basic process algebras . 10
2.1.2 Algebra of communicating processes . 13
2.1.3 Recursion and projection . 15
2.1.4 Discrete time extension(s) . 16

2.2 Model(s) - operational semantics . 19
2.2.1 Stepwise construction of models . 19
2.2.2 Model of BPA . 21
2.2.3 Model of BPA + PR . 22
2.2.4 Model of ACP . 22
2.2.5 Model of Discrete-Time Process Algebra 23

2.3 Proof techniques and notation . 24

3 Basic Probabilistic Process Algebra 33
3.1 Introduction . 33
3.2 Basic Process Algebras . 34

3.2.1 Fully Probabilistic Basic Process Algebra 34
3.2.2 Basic Probabilistic Process Algebra . 35
3.2.3 Deadlock . 37
3.2.4 Projection in pBPA and recursion . 38
3.2.5 Properties of pBPA and pBPA + PR . 42

ix

Acknowledgements

3.3 Structured operational semantics of pBPA and
pBPA + PR . 46
3.3.1 Introduction . 46
3.3.2 Model of pBPA + PR and properties of the model 54
3.3.3 Model of finite processes of pBPA and the properties of the model 77

4 Parallel composition and communication 87
4.1 Introduction . 87
4.2 Probabilistic Process Algebra with parallel composition 88
4.3 Structured operational semantics of pACP+ . 95

4.3.1 Model of pACP+ and properties of the model 95
4.4 Alternative definition of parallel composition . 115
4.5 Another viewpoint to parallel composition . 115

5 Probabilistic Process Algebra with Discrete Time 119
5.1 Introduction . 119
5.2 Basic Probabilistic Process Algebra with discrete relative time 120

5.2.1 Probabilistic process algebra with undelayable actions 120
5.2.2 Probabilistic process algebra with delayable actions 121
5.2.3 Properties of pBPAdrt . 123

5.3 Structural operational semantics of pBPAdrt . 127
5.3.1 Model of pBPAdrt and properties of the model 128

5.4 Extension with merge and communication . 149
5.4.1 Axiomatization of pACP+

drt . 149
5.5 Structured operational semantics of pACP+

drt . 153
5.5.1 Model of pACP+

drt and properties of the model 153

6 Abstraction 183
6.1 Introduction . 183
6.2 Abstraction in non-probabilistic process algebra . 184

6.2.1 Branching bisimulation on process graphs 185
6.3 Probabilities, abstraction and fairness . 186

6.3.1 Process algebra - axiomatization . 188
6.4 Model - fully probabilistic process graphs . 191

6.4.1 Probability measure on graphs . 193
6.5 Probabilistic branching bisimulation . 198
6.6 Deciding probabilistic branching bisimulation . 216

7 Applications 221
7.1 Introduction . 221
7.2 PAR protocol . 221

7.2.1 Specification . 221
7.2.2 Priorities and priority operator . 224
7.2.3 Verification . 227

7.3 PAR protocol in discrete-time model . 231
7.4 Verification rules - revisited . 236

8 Conclusion 241

Contents

8.1 Achievements . 241
8.2 Future research . 242

List of axioms 243

Summary 247

Samenvatting 249

Bibliography 253

Contents

List of Tables

2.1 Axioms of BPA. 11
2.2 Alternative axiom for the idempotency law. 11
2.3 Axioms for inaction. 12
2.4 Additional axioms for ACP. 14
2.5 Axioms for projection operator (n ≥ 1). 16
2.6 Axioms for the time operators. 17
2.7 Axioms for the undelayable deadlock. 17
2.8 Additional axioms for ACP−

drt − ID. 18
2.9 Deduction rules for action transitions for BPA. 21
2.10 Action transitions for projection . 22
2.11 Action transitions for recursion. 22
2.12 Action transitions of ACP. 23
2.13 Additional rules of BPA with discrete-time. 24
2.14 Additional time transition rules of ACP−

drt − ID. 24
2.15 Lexicographical path ordering. 27

3.1 Axioms for probabilistic choice operator. 34
3.2 Axioms for non-determinism in probabilistic setting. 36
3.3 Axioms for inaction. 37
3.4 Axioms for projection operator, n ≥ 1 . 38
3.5 Term rewrite system of pBPA. 45
3.6 Equalities that define PDF’s (part 1 - constants) . 51
3.7 Equalities that defined PDF’s (part 2 - basic operators) 51
3.8 Probabilistic transitions for pBPA. 55
3.9 Probabilistic transitions for recursion and projection. 55
3.10 Deduction rules for action transitions for pBPA. 56
3.11 Action transitions for projection. 56
3.12 Equalities that complete PDF for pBPA + PR (part 3). 57

4.1 Parallel composition defined by infinite set of axioms. 89
4.2 Axioms for the merge with memory operator. 89
4.3 Additional axioms for pACP+. 90
4.4 Communication merge in pACP+. 90
4.5 Probabilistic transitions of additional operators of pACP+. 96
4.6 Action transitions of pACP+. 97
4.7 Equalities that define PDFs for pACP+ (part 3 - parallel composition) 97
4.8 Additional axioms for pACP. 115
4.9 Rules for the merge operator in ACPπ. 116

xiii

xiv List of tables

4.10 Equalities that defined PDF’s for ACPπ (part 3 - parallel composition) 116

5.1 Axioms of pBPA−
drt - part 1. 120

5.2 Probabilities and time operators. 120
5.3 Axioms for delayable actions and processes. 122
5.4 Additional rules for the term rewrite system of pBPAdrt. 125
5.5 Probabilistic transitions in pBPAdrt. 129
5.6 Action transitions in pBPAdrt. 130
5.7 Rules for time transitions. 130
5.8 Deduction rules for predicate D. 130
5.9 Equalities that defined PDF’s for pBPAdrt (part 3) 131
5.10 Axioms for pACP+

drt - part 1. 150
5.11 Additional axioms for pACP+

drt. 151
5.12 Additional axioms for]||[in pACP+

drt. 151
5.13 Probabilistic transitions of pACP+

drt - part 2. 153
5.14 Action transitions of pACP+

drt - part 2. 154
5.15 Additional rules of pACP+

drt. 154
5.16 Deduction rules of pACP+

drt (predicates). 155
5.17 Equalities that defined PDF for pACP+

drt (part 4) . 155

6.1 τ−axioms. 184
6.2 Axioms for the abstraction operator. 184
6.3 Fairness rules KFARb

n, n ≥ 1, I ⊆ A. 185
6.4 Axioms for the abstraction operator (I ⊆ Aτ). 189

7.1 Axioms for the priority operator. 225
7.2 Axioms for the unless operator. 225
7.3 Deduction rules for the priority operator. 226
7.4 Deduction rules for the unless operator. 227
7.5 Axioms for the time free operator. 235

Chapter 1

Introduction

1.1 Formal methods

Formal methods are not introduced and developed for coffee and coca-cola vending machines. The
complexity of these systems is still low enough to fit within the limits of the complete understanding
of a single designer or a small group of designers. As the complexity of system designs begins to
exceed the human limits the necessity of additional instruments and techniques starts to increase.
Thus the idea of formal methods appears.

Formal methods are analytical approaches based on a rigorous mathematical models intended to
exclude or at least to reduce errors in software and hardware design. Due to their mathematical ba-
sis, formal specifications given in a formal language are precise, clear and unambiguous. Besides a
language meant to let the designer write a model of a system and construct a specification, a formal
method should include a proof system (mathematical rules) that allows the user to reason about state-
ments in the formal language. By analysis and manipulation of the given formal expressions he or she
can reason about the dynamic behaviour of the system and even more can establish certain relation-
ships between different expressions (systems). Of course the final goal of such an analysis is to prove
(to verify) that the proposed implementation conforms to the specification (or that the system satisfies
certain properties). This process is called formal verification. If a system has been formally verified,
one knows that the system is correct (error free) in all possible instances of its behaviour (under all
possible weather conditions [89]).

However, we should not forget that formal methods work with (abstract) models of systems. Thus
the analysis methods are applied to these models but not to the real systems themselves. This implies
that formal verification assures only that the model satisfies certain properties. Therefore, if the model
is too abstract and it does not adequately describe the real system, or if the written specification differs
from the intended one, then the proof is worthless.

Initial attempts to reason formally about programs were undertaken by Floyd [52], Hoare [76]
and Dijkstra [51]. The methods they developed (based on first order logic) were focused on proving
correctness of imperative programs. In the late seventies and early eighties a different approach was
taken - developing methods for reasoning about concurrent processes. Thus, Pnueli [97] proposed a
temporal logic to reason about concurrent programs. Petri [94] developed a theory of concurrency -
now well known as the theory of Petri nets - where real concurrency of events is considered. Milner
[89] and Hoare [77] proposed algebraic methods to reason about concurrent processes. These methods
are called process algebra. In the last two decades several variants of process algebra have come
into existence, the most important of which are CCS (Calculus of Communicating Systems [89, 92]),
CSP (Communication Sequential Processes [77, 78]) and ACP (Algebra of Communicating Processes

1

2 1.2. Probability

[34, 36, 27]). As the title of the thesis says we will look at this class of formal methods.
The main idea of process algebra is to have a simple language by which the behaviour of con-

current systems can be described and which has “as few operators or combinators as possible, each
of which embodies some distinct and intuitive idea, and which together give completely general ex-
pressive power” [91]. And also “a useful calculus1 should be possible to describe existing systems,
to specify and program new systems, and to argue mathematically about them, all without leaving
the notational framework of the calculus” [89]. In fact, the possibility to have specification and im-
plementation expressed in the same language and even more, staying in the same formalism when
establishing the relation between these two is one of the biggest strengths of process algebra.

Every process algebra is supplied with an operational semantics (usually based on transition sys-
tems). While the algebraic equations give an insight into the relationship between processes described
by some algebraic expressions, the operational semantics concerns the process behaviour. It describes
which activities and operational steps a process can perform by which the operational behaviour of
the process is completely captured. Thus, on the semantic level one can reason about processes that
show identical behaviour defined by some equivalence relation - usually strong or branching or weak
bisimulation.

Among the process theories ACP is considered most algebraic since it puts more emphasis on the
axiomatic theory itself rather than on its (operational) semantics. In this thesis, we propose several
process algebras that extend ACP. A brief introduction to ACP is given in Chapter 2.

1.2 Probability
When using traditional methods to model a concurrent system, designers restrict themselves to the
functional behaviour of that system. This means that the designer, for instance, can detect an error
in the system or may claim that the system is deadlock free, or can say that eventually the process
leaves the critical section or that the process terminates or that the message will be delivered. But
in real-life systems not only functionality but also quantitative aspects of the system behaviour are
important. Thus, one would rather know the probability that the system reaches an error state or
the number of retransmissions that should be done in order to have the message delivered correctly.
Even more due to the physical implementation of the system and its interaction with the environment
one cannot expect a perfect system without a possibility to fail. Naturally, the designer wants to be
certain that the probability for this to happen is sufficiently small. To mention an example reported in
[5] where the security protocol has been claimed unsafe because the method used for its verification
lacks techniques for accurate modelling of the protocol. Using probabilistic formal methods the
authors show that the protocol can reach an “unsafe” state but the probability for the system to end up
in this state can be controlled and made desirably small.

In this thesis, we turn our attention to probabilistic phenomena and propose methods for specify-
ing and verifying systems that show probabilistic behaviour - probabilistic systems. There are several
instances where probabilistic aspects have to be considered. First, in the case of an unreliable sys-
tem where the whole system or some of its components are subject to failure. Usually, failures of
system (components) are probabilistic in nature or can be approximated by some probabilistic pro-
cess. Clearly in these cases probabilities should be used for the sake of obtaining a more accurate
model of the system. Second, probabilities can be used in distributed algorithms that use the concept
of randomization (randomized algorithms). In this case the random choice is introduced to increase
performance and even in some cases to produce a solution for problems that are unsolvable in the

1We use the words process algebra, process calculus and process theory as synonyms.

Chapter 1. Introduction 3

fully deterministic setting. The third application of probabilities that we will discuss in more detail
in Chapter 6 is that they can be used to model fairness. Besides, another aspect where probabilities
play an important role is performance analysis. Lately, many efforts have been done to get together
research communities working in the areas of probabilistic (stochastic) modelling and performance
analysis. This issue goes beyond the scope of this thesis and for further reading we refer to [47] and
[46].

1.2.1 Introducing probabilities in formal methods

As known from probability theory, probability means to assign a real number from the interval [0, 1]
to a possible event, outcome or object; if the same experiment is repeated a number of times then the
probability gives the frequency that the particular event/outcome will appear or that the object will
be chosen. Think about flipping a coin or throwing a die or pulling a white ball out of a bag. When
modelling the probabilistic behaviour of a (concurrent) system we are not far from this situation.
Simply because governed by a probabilistic law the system or the environment “chooses” between
several alternative behaviours (system components). In the first case where the probabilistic choice is
resolved independently of the environment we talk about internal probabilistic choice. A probabilistic
choice is considered external if the environment determines which alternatives among all possible
ones are enabled. In this thesis, we assume internal probabilistic choices.

Mainly two approaches have been taken to extend the traditional formal methods with probabil-
ities. One approach is to replace alternative composition by probabilistic choice. As a result a fully
probabilistic model of a system is obtained. On the other hand, some models allow probabilistic
choice as well as alternative composition.

One may argue that in the presence of probabilities alternative composition can be thrown away;
basically that the fully probabilistic model is sufficient. In [98] we can find interesting arguments
on this issue. However, in the presence of a probabilistic choice operator, we still have a need of an
alternative composition because (see also [11]):

- alternative composition used in the interleaving approach of parallel composition does not model
uncertainty but independent activities of the parallel processes or a lack of information for their de-
pendencies. Even though the source of it may be a random process the system can be so complex
that practically it is impossible to determine or even approximate the probability distribution of that
process. In [17] an attempt to replace alternative composition by probabilistic choice in interleaving
of parallel processes was done but this turned out to be very impractical in system specification;

- alternative composition is very practical in modelling value passing: sending a particular value
by a process will communicate with a process allowing the receipt of any possible value. Replacing
it by probabilistic choice may easily lead to a deadlock situation. This use of alternative composition
will always be resolved in the parallel composition, except in the case of an open system, where
interactions with the environment are modelled;

- non-determinism may not make much sense for people doing performance analysis, but in for-
mal methods, the main issue is functionality of systems, (correctness, deadlock-freeness) whether
probabilistic aspects are taken into account in the specification of the system or not. Even though
introducing probabilities in the specification may lead to easier proofs of desired properties, this does
not mean that the system should be underspecified by “approximating” alternative composition by a
probabilistic distribution.

4 1.4. Results

1.3 Time

Certainly, another aspect that has to be taken into account when modelling hardware or software
systems is time. Thus it is not sufficient to know that some event will occur eventually but in some
cases it is desirable to occur and in some other situations it has to occur within some time bounds.
For instance, we expect that our computer promptly responds to our request; if it does not no harm
is done (except that we are annoyed). But if the flight control system does not react within a specific
period of time, catastrophic consequences may occur.

In this thesis, we propose an algebraic framework that can be used to model both the probabilistic
and time behaviour of a system. By means of a method that can reason about probabilistic and time
aspects at the same time we are able to deal with (specify and verify) more realistic properties of
systems like “with probability 0.9 your computer will respond within 30 seconds”. In this thesis, we
consider discrete-time systems. This means that if the system occupies state s at moment k, then
the next occupied state at moment k + 1 is randomly chosen governed by some discrete probability
distribution. This distribution does not depend on the previous states that the system has been in
but only depends on the last occupied state, namely s. This property is well known as memory-less
property or Markov property [85]. Our semantical model is strongly related to discrete-time Markov
chains [85, 79] in the deterministic case and to Markov decision processes [79] in the presence of
non-determinism.

Alternatively, there are models where time and probabilities are integrated by considering delays
of a continuous probabilistic nature. In this case, a transition that the system makes from state s to
state s′ is assigned a continuous distribution function expressing the probability that this transition will
be taken (among the other possible ones) within some period of time (that the system spends in state
s). Various theories have been proposed with respect to the distributions allowed in the model like
TIPP [62], Interactive Markov Chains [74], PEPA [75], EMPA [39, 40] that restrict the attention to
exponential distributions, and stochastic automata, SPADES [50], a general semi-Markovian process
algebra [45], NMSPA [87] that consider a more complex case and consider general distributions.

1.4 Main results

This thesis is divided into four parts. In the first part, we propose an extension of ACP with prob-
abilities called pACP+. This means that the probabilities are introduced in the process algebra by
introducing a new probabilistic choice operator. At the same the alternative composition operator of
ACP is kept. In order to achieve the interleaving nature of the asynchronous parallel composition we
add an auxiliary operator by means of which we obtain a finite axiomatization of the parallel compo-
sition operator. We also define an operational semantics for our theory including the notion of strong
probabilistic bisimulation. We show that the axiomatization is sound and complete with respect to the
bisimulation model.

In the second part, we concentrate on a time extension of the previously defined probabilistic
process algebra called pACP+

drt. In pACP+
drt timing is considered to be discrete. In our language, we

can model undelayable process as well as processes that can be delayed an arbitrary period of time.
While the first two parts are mainly focused on developing a specification method, the third part

focuses on verification. In this part, we introduce the notion of abstraction to the untimed fully
probabilistic process algebra. In the case of the ACP -like approach this is not included in the basic
theory, but rather is introduced as an additional feature. A set of verification rules is defined as well as
the notion of probabilistic branching bisimulation that constitutes a model for the axiomatization. We

Chapter 1. Introduction 5

remark that this bisimulation relates processes that are not related by any of the existing equivalence
relations for probabilistic processes and that intuitively should be related. An algorithm that decides
this relation is defined as well.

The last part presents several case studies that show how the earlier defined formalisms can be
used to model concurrent systems. It also shows how the verification method can be integrated with
the specification method and how it is used to prove the correctness of the described systems.

1.5 Outline of the thesis
The thesis consists of seven chapters organized in the following way:

Chapter 2 This chapter is an introductory part into process algebra. In short, we present several
process algebras, among which ACP , relevant for this thesis. This chapter also presents some
proof techniques used later in the thesis.

Chapter 3 A basic process algebra containing basic operators is introduced. The probabilistic choice
operator is defined and the way it is combined with the alternative composition operator is
described.

Chapter 4 The process algebra from Chapter 3 is extended with the notion of an asynchronous par-
allel composition. We give a number of theoretical results about the new algebra like the elim-
ination property and soundness and completeness results for the axiomatization with respect to
the defined model.

Chapter 5 Timing features are added to the process algebras from Chapter 3 and Chapter 4. We
discuss the necessity of introducing a new operator when probabilities, time and the interleaving
approach to asynchronous concurrency are combined. Operational semantics and a time variant
of probabilistic bisimulation are defined.

Chapter 6 This chapter treats the issue of abstraction in the fully probabilistic model. A probabilistic
process algebra with abstraction is defined as well as its semantical model based on probabilistic
branching bisimulation.

Chapter 7 We apply the theories from Chapter 4, 5 and 6 to the specification and verification of an
untimed and a timed variant of the PAR (Positive Acknowledgment with Retransmission) pro-
tocol. By means of the CABP (Concurrent Alternating Bit Protocol) we describe possible direc-
tions to extend the process algebra and the bisimulation from Chapter 6 with non-determinism.

Chapter 8 We give an overview of the results from the thesis and discuss future research.

1.6 Related work
Work on probabilistic extensions of process algebras started in the early nineties. The pioneer work
has been presented in [86, 54, 56, 81, 80, 70]. These approaches use labelled transition systems as an
underlying operational model in which probabilities are associated to transitions. Certainly one of the
major results is presented in [86] where the notion of traditional (strong) bisimulation equivalence is
extended to the notion of probabilistic bisimulation for probabilistic processes. For fully probabilistic

6 1.6. Related work

systems this notion corresponds to lumping equivalence [82]. In [56], the authors classified proba-
bilistic models into three classes: reactive, generative and stratified. In the reactive model, different
probability distributions are assigned to different actions. The probabilities assigned to the outgoing
transitions of one state labelled with the same action name sum up to 1. The philosophy behind this
scheme is that the environment chooses an action among all possible ones, and afterwards the system
internally chooses the next state according to the probability distribution. In the generative model
every state is assigned one probability distribution defined over all outgoing transitions regardless
which action label transitions have. The stratified model extends the generative model in a way that
it captures the branching structure of purely probabilistic choice made by a process. Using PCCS
[54, 80], an extension of SCCS [91], the authors define an operational semantics and a bisimulation
equivalence for each model.

In contrast to these models, in [70, 71] we find a new probabilistic model, called the alternating
model. In this model, probabilistic transitions are separated from action transitions. As a result
this model distinguishes between probabilistic and non-deterministic states. Outgoing transitions of a
probabilistic state are labelled by probabilities that sum up to 1, like in the generative model. Outgoing
transitions of a non-deterministic state are labelled by atomic actions. We employ this model to define
the semantics of our process algebras. In the proposed probabilistic extension of Milner’s CCS in
[71] also called PCCS, a new probabilistic choice operator is introduced in addition to (and not as
a replacement of) non-deterministic choice operator. Thus, there are two types of expressions: non-
deterministic and probabilistic ones. In Figure 1.12 we give an example of the parallel composition of
two PCCS processes. One of the processes can perform a with probability 1/2 and b with probability
1/2. The other process can perform c with probability 1/3 and d with probability 2/3. The parallel
composition of these processes with probability 1/6 behaves as a (non-deterministic) process (the
snaky arrow in the figure labelled by 1/6 that starts in the initial state and reaches a state represented
by ◦) that actually represents the interleaving of a and c. Thus, this state represents a process that
chooses non-deterministically between action a, action c and action e. e is the communication action
of a and c. If a is chosen, the execution of a is followed by an execution of c. If the non-deterministic
choice is resolved in favour of c then the execution of c is followed by an execution of a. In the third
case in which e is chosen after the execution of e the process terminates. In a similar way we interpret
the other branches shown in the figure. Thus, in order for the processes to start to interleave both
have to resolve the internal probabilistic choices and only afterwards the interleaving between the
two obtained non-deterministic processes can take place. Our approach differs exactly on this issue
since according to our definition two parallel processes can start to interleave as soon as one of them
has resolved its internal probabilistic choice. This will be presented in more detail in Chapter 4.

In [49], a probabilistic model based on so-called bundle transition systems is defined on which a
probabilistic variant of asynchronous parallel composition very similar to our definition is proposed.
Besides, several criteria that an asynchronous parallel composition for probabilistic processes has to
satisfy are defined.

A first attempt to extend ACP with probabilities has been reported in [17]. The alternative com-
position operator is replaced by a probabilistic choice operator. Due to the absence of alternative
composition, the defined parallel composition operator is decorated with two probabilistic parameters
σ and θ. θ gives the probability that the parallel processes synchronize on a communication action.
The probability that the processes do not synchronize but proceed autonomously is thus 1− θ. In this
case, the left-hand process of the parallel composition is selected to make the first action with proba-
bility σ and the right-hand process does so with probability 1− σ. Basically, the probabilistic choice

2Here we borrow the notation we use in Chapter 4.

Chapter 1. Introduction 7

(a 1/2 b) ‖ (c 1/3d) with γ(a, c) = e, γ(a, d) = f, γ(b, c) = g, γ(b, d) = h

b

d
h

c d

2
3

1
3

b

d

a b

1
2

1
2

‖ =

g

b

cb

c

1
3

1
6

1
6

1
3

d a

f
da

a

c
e

a

c

a c

Figure 1.1: Parallel composition as defined in Hansson’s alternating model.

in this setting is considered to be external. This causes certain problems in defining the encapsulation
operator since renormalization of probabilities has to be taken into account (see also the discussion in
[49]).

In [102], a complete axiomatization for a probabilistic CCS-like language with possibly un-
guarded finite-state recursive definition is studied. Based on this result, in [3] the authors propose
a complete axiomatization obtained by extending the general axioms of iteration algebra [41], which
characterize the equational properties of the fixed point operator on continuous or monotonic function,
with several axiom schemas that express laws specific to probabilistic bisimulation.

In [100], a model of probabilistic automata is introduced and studied. In the case of probabilistic
automata a transition from a state leads to a probability distribution over states rather than to a single
state, as it is the case in ordinary automata. Thus, the choice between different transitions is a non-
deterministic choice, while the choice of a state within a transition is a probabilistic choice. In [32]
a comparison of the alternating model and the model of probabilistic automata is given. Different
axiomatizations corresponding to different bisimulation relations are analyzed. The authors show that
for both models the axiomatizations for strong probabilistic bisimulation coincide. On the other side,
they show that the alternating semantics and the semantics of probabilistic automata based on weak
bisimulation of [101, 100] are incomparable.

Developing verification techniques for probabilistic models has been a central issue of many re-
searchers as well. Inspired by their counterparts in the nonprobabilistic case, several probabilistic
bisimulation and simulation relations have been proposed. As mentioned above in [86] the first defi-
nition of (strong) bisimulation for probabilistic systems is defined. Basically, this definition later has
been adapted into a probabilistic bisimulation for different probabilistic models: [56] for the reactive,
generative and stratified models, [71] for the alternating model and [101, 100] for probabilistic au-
tomata. On the other hand, it is still a great challenge to define a relation that abstracts away internal
actions.

In his dissertation [80], Jou defines a notion of probabilistic branching bisimulation for finite pro-
cesses. Basically, the probabilistic branching bisimulation that we define in Chapter 6 coincides with
the one of Jou for finite processes. In [29] weak and branching bisimulation relations for fully proba-
bilistic processes are defined. The authors show that in the probabilistic setting these two definitions
coincide. They also give an algorithm to compute the weak bisimulation equivalence relation in time
O(n3) where n is the number of states in the considered probabilistic transition system.

8 1.6. Related work

For models of probabilistic systems with non-determinism different bisimulation relations are
defined in [101, 100, 95, 30, 103]. In [101, 100] the strong and weak bisimulation relations defined
in [92] and [88] are generalized to the probabilistic framework. Since in probabilistic automata a
transition leads to a probability distribution over states, an equivalence relation defined between two
automata has to be extended to probability distributions over states. In this case, non-determinism is
resolved by means of randomized schedulers. In [95] another variant of weak bisimulation is defined
for labelled concurrent Markov chains. To compute this bisimulation only a finite set of schedulers,
so-called deterministic schedulers, have to be investigated. Based on this result an algorithmic method
that decides the weak bisimulation relation is defined. In [30, 103] so-called delay bisimulation is
introduced which uses the concept of norm functions [63].

Chapter 2

Preliminaries from Process Algebra

In this chapter, we give a brief introduction into the basic aspects of ACP -style process algebra.
We limit ourselves to those aspects relevant for this thesis. The purpose of this overview is to give
the foundations upon which we build our of probabilistic and timed extensions. The definitions are
presented without many details and technicalities. For more details concerning this material we direct
the reader to [34, 27, 26, 53, 38].

2.1 Process Algebra
Process algebra is an algebraic theory used to specify and verify, in general to study processes. As the
name says itself, process algebra finds its mathematical foundation in algebra. And so, compared with
other formal methods developed for the same purposes, in process algebra, the processes and their
behaviour are written in the form of process expressions and the relations between them are written
in the form of algebraic equations. In that way, manipulations with processes becomes manipulations
with equations in the algebraic sense.

The kernel of every process algebra consists of a set of operators (including constants as nullary
operators) and a set of axioms. Axioms are of the form t = t′ where t and t′ are terms in the considered
process algebra containing operators and/or free variables. Sometimes axioms are extended to so-
called conditional axioms: an axiom that can only be applied provided a certain condition holds.
They have the form

∧

i∈I

ti = t′i ⇒ t = t′ for a finite set I and terms ti, t′i, t and t′.

Behind every operator and axiom there is an intuitive motivation: an insight that explains in which
way we want to compose small processes to bigger ones (by means of operators) and which processes
should be considered equal (by means of axioms). In other words, equations and operators do not
have any meaning unless we place them in a certain real “world” and match the terms of the process
algebra with the entities of the real world. This step is traditionally called “giving an interpretation of
the formal theory” in the algebraic community and “giving a semantics of the syntax” in the computer
science community. Consider, for example, the algebraic equation xˆ2 = 1 where x is a variable.
If we do not say what we mean by “ ˆ ”, “2”, “1” and “=” and what is the range of x, this equation
is meaningless. On the other hand, it can have different solutions (the values x takes for which the
equation becomes true) depending on our idea behind the above symbols. Thus, if the symbols are
given the standard meaning in the set of natural numbers we obtain that 1 is the solutions of the
equation. In the set of real numbers there are two solutions, namely for x = 1 and x = −1. If x
ranges over the set of natural numbers and = means≡mod5 then the equation has another meaning. In
the second year of elementary school according to their own interpretation of the symbols the equation

9

10 2.1. Process Algebra

may have as a solution the number of pupils in the class. In the same way, the equation X = a ·G as
such does not mean anything. But it may mean: read a message (the meaning of a) and answer it (the
meaning of G), press Alt − F4 (for a) and switch off your computer (for G) or press any key (for a)
and go on with your work (for G).

The operational semantics of terms of process algebra is usually given by transition relation(s)
in the form p → p′ (usually labelled). Namely, each term represents a process and the behaviour of
one process is described by a set of activities that it can perform: for every possible activity there
is one assigned transition. We read p l→ p′ as: p can do some activity that is described by l and
afterwards it behaves like p′. Transition relations are defined by a set of rules, called deduction rules
that together with the operators form a term-deduction system (for the formal definitions see Section
2.3). These rules basically describe the way the behaviour of small processes reflects on the behaviour
of a bigger process obtained by composing the smaller ones. The issue of operational semantics will
be constantly treated through the thesis. More details about operational semantics in general and
particular semantics of the process algebras presented in the thesis will be discussed in almost all
subsequent chapters.

A popular way to present process algebras is by modularization. Namely, starting from a small
set of operators and axioms, one can add new features by adding new operators and axioms. It is a
very convenient concept if a more complex theory needs to be constructed. The track to the desired
theory may lead through a growing sequence of embedded theories starting from a very simple one.
Also, having small modules for one feature (or a few) makes it possible to combine them in different
ways, in different theories suitable for particular problems. Following this concept, we structure the
introduction as follows. We start with a basic process algebra. Then step by step we introduce more
complex theories with their signatures and related set of axioms, each of them as an extension of some
simpler theory previously defined. After that, we say a few words about the operational semantics
and the bisimulation models of these theories.

The last section of this chapter presents some proof techniques and strategies which will be used
throughout the thesis many times. This section also introduces the notations and the abbreviations
used in the thesis. The concept of term-rewriting systems and some techniques developed in this field,
and shown useful in solving problems in the area of process theory, will be presented as well. Finally,
we discuss two approaches to show that a given set of deduction rules defines a transition relation. As
mentioned above, deduction systems give meaning of algebraic expressions and algebraic equations.
So, we are predisposed to a deduction system that defines meaningful transition relations.

2.1.1 Basic process algebras

Every process algebra has basic constructors: constants and operators. Constants stand for the atomic
actions that the considered processes (intended to be modelled by the relevant process algebra) can
execute. Therefore, every process algebra is parametrized by a fixed, finite set A - a set of designated
atomic actions. Awill be also used to denote the set of constants that correspond to the atomic actions.
Some process algebras have some additional constants that stand for special processes (for example
the deadlock process).

The most simple process algebra that we start this introduction with is called Basic Process Al-
gebra, BPA1. This process algebra forms the core on which all other process algebras are built.
Nevertheless, we have to point out that in Chapter 3 we will start with a process algebra that is not an

1More precisely Basic Process Algebra is a class of process algebras that have the properties presented here. In the
sequel by BPA and in general by PRA we mean an element of the relevant class of algebras.

Chapter 2. Preliminaries 11

extension of BPA.
BPA has two (binary) operators: the sequential composition operator · and the alternative compo-

sition operator also called non-deterministic choice operator +. The sequential composition is used
to express when two processes are executed one after the other (sequentially); given processes p and
q the process that first executes p and after p terminates successfully continues with q is denoted by
p ·q. If a process can proceed with two (or more) different processes, say alternative p or alternative q,
the choice between these two alternatives is presented by p+ q. The choice between p and q is made
exactly when the first action of p or q is executed. The process which has not been chosen is dis-
carded; it cannot be recovered later. To conclude, the signature of BPA consists of ΣBPA = (A, ·,+).
These operators are called basic operators since all other operators introduced later in this chapter can
be eliminated in favour of these. The axioms of process algebra BPA are shown in Table 2.1.

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y) · z = x · z + y · z A4
(x · y) · z = x · (y · z) A5

Table 2.1: Axioms of BPA.

a + a = a AA3

Table 2.2: Alternative axiom for the idempotency law.

Axiom A1 and A2 express commutativity and associativity, respectively, of the alternative com-
position: ordering and grouping of the alternatives is irrelevant for the outcome of the choice. Axiom
A4 expresses the right distributivity of sequential composition over alternative composition; no matter
which alternative is chosen, x or y, after its successful termination the process continues to execute
z. Once again we point out that the choice between x and y is resolved at the moment when the first
action of x or y is executed. This interpretation is the reason the left distributivity law of sequential
composition over alternative composition is not present; if x · (y + z) and x · y + x · z are considered
equal then the intuition behind the alternative composition will be that all choices are resolved at the
very first moment when the process is initialized (see e.g. [18]). Adding this axiom to the set of
axioms of BPA leads to a so-called trace semantics [55, 61]. Axiom A5 does not need any justifica-
tion. Axiom A3 expresses the idempotency of the alternative composition: choice between the same
alternatives gives always the same outcome. Notice that in presence of the other axioms of BPA, the
axiom A3 in Table 2.1 is equivalent, for closed and guarded terms in BPA (the notion of guardedness
will be discussed in Section 2.1.3), to the axiom AA3 in Table 2.2. Thus, A3 in BPA (and any ex-
tension of BPA) can be replaced by AA3 without affecting the equalities in BPA valid for closed and
guarded terms. The reason to do so, is the fact that AA3 remains valid in all probabilistic process
algebras we will describe, whereas A3 does not (see Example 3.2.3). Since we stick here to the set
of axioms of BPA as it is in [27], we use A3 in the definition of BPA and all other non-probabilistic
process algebras.

12 2.1. Process Algebra

Deadlock

Every term of BPA represents a process that can perform at least one action. But sometimes it is
desirable and even necessary to model a process that does nothing. Such a process is called a deadlock
process. As it cannot be expressed by means of the BPA constructors, we add a new constant δ -
deadlock or inaction - meaning exactly what has been said above: it represents a process that nor
executes an action neither terminates successfully. It is defined by the axioms given in Table 2.3. The
new algebra will be denoted by BPAδ.

x+ δ = x A6
δ · x = δ A7

Table 2.3: Axioms for inaction.

AxiomA7 expresses that once deadlock is reached no further activities are possible. Note that a ·δ
is not equal to a because the latter one executes action a and terminates successfully. In the literature
two type of termination can be found: deadlock as described above and successful termination (also
called empty process). The latter one sometimes is also introduced by means of a new constant ε
([84, 14, 27, 20, 25]). Thus, ε · a = a because the only activity that process ε can do is to terminate
successfully and afterward action a is executed. In other process algebras, for instance CCS, CSP no
distinction between successful and unsuccessful termination is made.

Axiom A6 expresses that the deadlock process can never be chosen as an alternative if there is
another possibility; when a process contains a deadlock alternative the alternative composition tries
to avoid it whenever possible. In [72] the authors build a semantical model in which this axiom is not
valid.

Definition 2.1.1. The set of basic terms in BPAδ is defined inductively as follows:

1. For every a ∈ Aδ, a is a basic term;

2. If a ∈ Aδ and t is a basic term, then a · t is a basic term;

3. If t, s are basic terms, then t+ s is a basic term.

If in the first and the second items, instead of a ∈ Aδ we take a ∈ A and the third item is
unchanged, we obtain the inductive definition of the set of basic terms of BPA.

From now on, if we state something for BPA and BPAδ, instead of giving two separate statements,
one for BPA and another one for BPAδ, we use in short BPA(δ) as a variable that means either BPA or
BPAδ.

Example 2.1.2. We finish this section by an example to show a type of process that can be de-
scribed by BPAδ. Consider a communication channel that reads a datum from a process and sends
it out to an other process. During the transmission the datum can be damaged. We will define the
term that represents the behaviour of the channel, the other two processes are not important at this
moment. For the specific problem the following set of atomic actions suffices to describe the process:
A = {read from, send to, damage}. In accordance to this, our process algebra has four constants,
namely A = {rf , st, d, δ} where rf stands for atomic action read from, st stands for atomic action

Chapter 2. Preliminaries 13

send to and d stands for atomic action damage. The channel behaviour can be described by the fol-
lowing term rf ·(st +d). Clearly, by this we model a highly unrealistic communication channel: it can
be used to transmit only one message. Yet we neither have constructors to model a communication
channel that can be used for infinitely many transmissions, nor we can model the way our channel
reacts in a “real” communication with the processes on “the ends” of the channel. δ is not used in this
specification but it will be essential in some later examples where we improve the specification of the
communication channel.

2.1.2 Algebra of communicating processes
The conclusion which finishes the example above implies that BPAδ should be strengthened. First we
solve the second problem stated in the conclusion by adding new operators to the signature of BPAδ.
The key operator for modelling concurrent systems, as one of the main aims of process algebra,
is the parallel composition or merge operator ‖ . p ‖ q describes a process that executes p and q in
parallel, generating all possible interleavings and all possible communications of the two components.
Thus, p and q may synchronise (communicate) on certain actions but they can also perform actions
autonomously. Communication is defined by means of a function γ : Aδ × Aδ → Aδ that indicates
which atomic actions communicate. This function is assumed to be commutative and associative,
and satisfies the equation γ(δ, a) = δ for all a ∈ A. The latter constraint expresses that δ does
not communicate with any action. There are two other merge like operators added: the left merge
operator ‖ and the communication merge operator | . p‖ q represents a process similar to p ‖ q
with the restriction that the first action must be performed by p. The term p | q represents a process
similar to p ‖ q whose first action is a communication between p and q; it forces the processes to
synchronize. These operators, ‖ and | are actually auxiliary operators introduced to obtain a finite
axiomatization for the parallel composition operator. The last operator added to the extended signature
is the encapsulation operator ∂H parametrized by a set of atomic actionsH (H ⊆ A). The ∂H operator
is in fact a renaming operator which renames all actions fromH into δ. It is used to encapsulate atomic
actions that are intended to synchronize such that their asynchronous execution is not permitted.

The axioms of the new operators are given in Table 2.4 where a and b range over Aδ. These axioms
together with the axioms in Table 2.1+2.3 constitute the axiom system of the process algebra ACP,
called Algebra of Communicating Processes.

We briefly explain some of the axioms. Axiom CM1 expresses exactly the idea behind the paral-
lel composition operator described above: the behaviour of two processes running in parallel consists
of the independent execution of actions by the components (the first and the second summand) and
of actions that are the result of synchronization between the two parallel components (the third sum-
mand). Axioms CM2 and CM3 state that the first action performed by x‖ y comes from the first
argument x. If the first argument cannot proceed, it is a deadlock process, and then the entire process
is blocked (as δ‖ x = δ follows from CM2). Axioms CM5, CM6 and CM7 capture a similar idea
behind the communication merge operator: the first action performed by x | y has to be a communica-
tion action of x and y. Axiom CF gives the basic step of the communication operator by relating the
communication merge operator applied on atomic actions and the communication function γ defined
also on pairs of atomic actions. CM4, CM8 and CM9 express that the left merge is right distributive
and that the communication merge left and right distributes over the alternative composition. Note
that axioms CM1, CM8 and CM9 will be modified later in the probabilistic setting. Axioms D3
express that encapsulation of an alternative composition is an alternative composition of encapsula-
tion applied on the two alternatives. In other words, the encapsulation operator distributes over the
alternative composition. Axiom D4 expresses that the encapsulation operator distributes over the se-

14 2.1. Process Algebra

a | b = γ(a, b) CF

x ‖ y = x‖ y + y‖ x+ x | y CM1
a‖ x = a · x CM2
a · x‖ y = a · (x ‖ y) CM3
(x+ y)‖ z = x‖ z + y‖ z CM4

a | b · x = (a | b) · x CM5
a · x | b = (a | b) · x CM6
a · x | b · y = (a | b) · (x ‖ y) CM7
(x+ y) | z = x | z + y | z CM8
z | (x + y) = z |x + z | y CM9

∂H(a) = a if a /∈ H D1
∂H(a) = δ if a ∈ H D2
∂H(x+ y) = ∂H(x) + ∂H(y) D3
∂H(x · y) = ∂H(x) · ∂H(y) D4

Table 2.4: Additional axioms for ACP.

quential composition operator. Thus, in a case of closed or guarded terms after a finite number of
times these axioms are applied encapsulation takes as an argument a constant. At this level either D1
or D2 can be applied.

In the previous section, we mentioned that the constants in A and the constant δ if included,
together with operators · and + are considered as basic operators. It is due to the fact that every
closed term that contains other operators, added to the signature of BPA(δ) (in order to obtain an
extension of this algebra), can be rewritten by means of the axioms into a closed term that contains
only the basic operators. The following theorem formulates that ACP possesses this property, namely,
the operators that extend the signature of BPAδ to the signature of ACP, just being introduced, can
be eliminated from every closed term of ACP. The formal definition of the elimination property is
given on page 27. Here the symbol ` denotes that the equation on the right side of the symbol can be
derived by means of the axioms of the algebra which is on the left side of the symbol.

Theorem 2.1.3 (Elimination theorem of ACP). Let p be a closed ACP term. Then there is a closed
BPAδ term q such that ACP ` p = q. �

Example 2.1.4. Back to the example with the faulty channel, using ACP we can go a step further
and model the two communications that happen when a datum is read on one end of the channel and
when the datum is sent out on the other end of the channel. Thus, if there are very simple processes,
say S and R, the first which brings a datum to the channel and the second that accepts the delivered
message from the channel, they are described by terms sf and rt where sf is a new constant that
stands for an atomic action meaning “send a datum through the channel” and rt is a new constant
that stands for an atomic action meaning “receive a message from the channel”. Then S ‖Ch ‖R
represents a process that sends a message from S to R which is possibly not delivered correctly. The
communication function is defined as: γ(sf , rf) = cf , γ(st, rt) = ct and for any other pair it gets

Chapter 2. Preliminaries 15

value δ. Note that the set of constants A is now extended with sf , rt, cf and ct. By means of the
axioms taking H = {sf , rf , st, rt} we derive the following equation:

∂H(S ‖Ch ‖R) = cf · (ct + d · δ).
If the message gets damaged during the delivery process, R does not accept it. In other words, no
communication is then established between processes Ch and R. This is expressed by the sub-term
d · δ; after a corruption of the message the process deadlocks. Note that the original term has been
reduced to a term containing only basic operators.

2.1.3 Recursion and projection
In Example 2.1.2 and 2.1.4 the processes specified by terms of BPAδ and ACP are finite; after finitely
many steps they terminate. Of course in reality a communication protocol should be designed such
that it can broadcast a sequence of messages, possibly an unbounded sequence. After one message is
transferred, it has to be able to continue with the next message, and so on. In other words, we need to
make our process algebra powerful enough to model processes that show infinite behaviour.

An algebraic concept of infinite processes is based on the notion of recursion, recursive equations
and process variables. When a recursive equation is interpreted in a certain model of the relevant
process algebra, the process variables which are part of it take processes as values. Those processes
that when substitute for the process variables make the interpretation of the recursive equation valid
in the model are called a solution of the recursive equation. Of course, certain recursive equations do
not have finite processes as their solution. Thus we come to the key of our problem: infinite processes
are introduced as solutions of a (set of) recursive equation(s) in a suitable model of the considered
process theory.

Very often if we deal with recursion and infinite processes the notion of projection is introduced
because it facilitates the coping with infinite processes. The idea behind the projection is to ob-
serve the behaviour of one process (finite or infinite) till a certain moment (in the sense of number of
action occurrences). In fact, the finite processes are not an interesting subject to be treated by projec-
tion; sooner or later they exhaust all possible actions and terminate. On the other hand, the infinite
processes cannot be observed as a whole, but only their finite parts constituted of atomic actions or
deadlock. This is exactly what projection offers: it gives the finite sub-processes of an infinite process.

The notion of projection in process algebra is introduced by a new operator Πn(p), n ≥ 1, called
the projection operator2. The term Πn(p), represents a process which performs the same actions as
p but at most n steps can be executed. The projection operator, Πn is defined as an unary operator
by the axioms in Table 2.5 where a ranges over A (or Aδ if BPAδ is considered). Since it is meant
to generate the finite approximations of infinite processes, this operator (or the set of operators) is
included mainly if solutions of recursive specifications are considered in the model. By BPA + PR
(BPAδ + PR) we denote a theory obtained from BPA (BPAδ) by adding the projection operators Πn,
n ≥ 1, and the relevant axioms. We believe that the axioms do not need additional explanation.
Neither does the theorem below. More properties and a thorough discussion of projection will be
carried out in Section 3.3.2.

Theorem 2.1.5 (Elimination of the projection operator). If s is a closed BPA(δ) +PR term then there
exists a basic BPA(δ) term t such that BPA(δ) + PR ` s = t. �

Using recursion we can improve the specification of our communication channel.

2A usual notation for the projection operator is πn, but since we use π as a variable ranging over probabilities, we
introduce a new notation for this operator.

16 2.1. Process Algebra

Πn(a) = a PR1
Π1(a · x) = a PR2
Πn+1(a · x) = a · Πn(x) PR3
Πn(x+ y) = Πn(x) + Πn(y) PR4

Table 2.5: Axioms for projection operator (n ≥ 1).

Example 2.1.6. The specification in Example 2.1.4 defined a communication protocol that transmits
only one message. Now we change the specification in the following way:
S = sf · S
R = rt ·R and
Ch = rf · (st + d) · Ch,
where S, R and Ch are process variables. The recursive equation S = sf · S defines a process that
does action “send a frame” denoted by the constant sf and afterwards behaves the same as the process
before the execution this action; clearly it is a process that keeps on sending frames. Likewise, we
interpret the recursive equations for R and Ch. Note that this specification abstracts from the contents
of the message. Also at this point it is beyond our interest to discuss the properties of the processes
defined by these equations.

In addition we observe from the example above the structure of the given equations. Namely, the
left-hand side of every equation contains only a variable, and the right-hand side is a term that contains
a variable (in this case it is only one variable but in general it may contain more than one variable).
We can also detect that every occurrence of a variable on the right-hand sides of the equations is
prefixed by an atomic action or by a closed term (in the case of Ch). If a recursive equation has such
a structure we say that it is guarded. On the other hand, there is the concept of unguarded recursion.
Take the equation X = X , for example. In every model whose domain has more than one element,
this equation has more than one solution. Since we tend to the idea that every recursive specification
defines a unique process, unguarded recursion is not desired in our concept of recursion. In [27], the
authors show that in the term model and the graph model (to be discussed later in this chapter) of
BPA and ACP every guarded recursive specification has a unique solution. We come to this issue once
again in Chapter 3 where we investigate it for probabilistic process algebras.

The formal characterization of the notion of guardedness is given in Section 3.3. Although there,
it is considered in a probabilistic setting, the reader can easily derive the relevant definitions for the
non-probabilistic setting from the given ones.

2.1.4 Discrete time extension(s)
Timed process algebras [24] are certain process algebras which incorporate information about time.
A usual way to do so is to add new operators that allow the explicit specification of timing aspects.
In Chapter 5, we follow the discrete-time approach where time is discrete: time is divided into an
infinite number of time slices. Events can occur within such a time slice; also, a process can idle for
a certain number of time slices. This approach is taken in [19, 20, 108, 6] and also [22].

Another way to introduce time is to parametrize atomic actions with non-negative real numbers
that represent the moment of execution. Algebras that model the passing of time as a continuous
value are called real-time process algebras. This type of process algebras are for example presented

Chapter 2. Preliminaries 17

in [16, 22, 23].
Discrete-time methods are as expected less expressive than real-time ones, but, on the other hand,

they are less complex and still expressive enough for practical purposes. As is shown in [42] and
[108], discrete time process algebra can be successfully applied in the analysis of real-life problems.

We briefly sketch a possible way to extend BPAδ and ACP to discrete time process algebras with
relative timing. The model we present is based on the model defined in [108] and references given
there. In Chapter 5 it will be the basic model on top of which we build a probabilistic time theory.

Timed process algebras that are presented here are BPA−
drt − ID and ACP−

drt − ID; the latter one
as an extension of the former one by the merge operator. BPA−

drt − ID extends BPAδ with two new
operators: the time-unit delay operator σrel and the “now” operator νrel. The operator σrel is introduced
to make the passage of time explicit: term σrel(p) represents a process which is postponed for one
time unit and then it behaves like p. The term νrel(p) represents the sub-process of p which starts its
activities in the current time slice; all activities of p that idle are not included in νrel(p).

For a given set of atomic actions A, BPA−
drt − ID has signature ΣBPA−

drt−ID =
(

{a : a ∈
Aδ},+, ·, σrel, νrel

)

. The constant a, called undelayable action, denotes a process which executes a
in the same time slice it is initialized and then it terminates. Note that it cannot be passed on to the
next time slice: it gets lost at the moment the next time slice starts.

The axioms of BPA−
drt − ID are given in Table 2.1+2.6+2.7. The most interesting fresh axioms

σrel(x) + σrel(y) = σrel(x+ y) DRT1
σrel(x) · y = σrel(x · y) DRT2

νrel(a) = a DCS1
νrel(x + y) = νrel(x) + νrel(y) DCS2
νrel(x · y) = νrel(x) · y DCS3
νrel(σrel(x)) = δ DCS4

Table 2.6: Axioms for the time operators.

x + δ = x DRT3
δ · x = δ DRT4

Table 2.7: Axioms for the un-
delayable deadlock.

will be discussed in short. Axiom DRT1 expresses that time passage does not determine a choice.
In other words, no sub-process that can idle till the next time slice gets lost when the next time slice
is initialized. Axiom DRT2 captures the relative-timing character of the theory. It means that the
moments at which certain actions occur are relative with respect to the previous action executed by
the same process. Thus, if the prefix x idles till the next time slice then the complete remaining part of
the process also idles till the next time slice, irrespective of the scope of the time-unit delay operator.
Axiom DCS1 expresses that an undelayable action always starts in the current time slice. Axiom
DCS2 expresses that the part of x + y that starts in the current time slice consists of the alternative
composition of the parts of x and y that starts in the current time slice. Axiom DCS3 expresses that
the part of x · y that starts in the current time slice consists of the part of x that starts in the current
time slice, followed by y. Axiom DCS4 expresses that σrel(x) cannot start in the current time slice.

ACP−
drt − ID is a discrete time process algebra with the notion of parallel composition that can be

seen as a combination of BPA−
drt− ID and ACP. Its signature contains the constants and the operators

of BPA−
drt−ID and the operators of ACP. The set of axioms for the merge and encapsulation operators

in discrete time setting and the auxiliary operators are shown in Table 2.8 and together with the axioms
in Table 2.1+2.6+2.7 (the axioms of BPA−

drt − ID) constitute the axiom system of ACP−
drt − ID.

18 2.1. Process Algebra

a | b = γ(a, b) DRTCF

x ‖ y = x‖ y + y‖ x+ x | y CM1

a | b · x = (a | b) · x DRTCM2
a · x | b = (a | b) · x DRTCM3
a · x | b · y = (a | b) · (x ‖ y) DRTCM4

σrel(x) | νrel(y) = δ DRTCM5
νrel(x) |σrel(y) = δ DRTCM6
σrel(x) | σrel(y) = σrel(x | y) DRTCM7
(x + y) | z = x | z + y | z CM8
z | (x+ y) = z |x + z | y CM9

a‖ x = a · x DRTM2
a · x‖ y = a · (x ‖ y) DRTM3
(x + y)‖ z = x‖ z + y‖ z DRTM4

σrel(x)‖ νrel(y) = δ DRTM5
σrel(x)‖ (νrel(y) + σrel(z)) = σrel(x‖ z) DRTM6

∂H(a) = a if a /∈ H DRTD1

∂H(a) = δ if a ∈ H DRTD2
∂H(x+ y) = ∂H(x) + ∂H(y) D3
∂H(x · y) = ∂H(x) · ∂H(y) D4
∂H(σrel(x)) = σrel(∂H(x)) DRTD5

Table 2.8: Additional axioms for ACP−
drt − ID.

Many axioms in Table 2.8 represent timed counterparts of axioms of ACP where the untimed
action a is replaced by the undelayable action a. Axioms DRTM5 and DRTM6 describe the time-
step behaviour of the left merge operator. If the left argument of the left merge must idle but the right
argument cannot then the entire process ends up in an undelayable deadlock, as the right argument
cannot be passed on to the next time slice, which actually the left argument tries to do. However, if
the right argument contains a summand that can idle together with the left argument then the time
step can be done but the summands of the right component that cannot idle are discarded. Axioms
DRTCM5−7 express that two processes can communicate only if they perform the actions on which
they synchronize in the same time slice.

In [108] new constants denoting delayable atomic actions are added to BPA−
drt − ID and

ACP−
drt − ID. But the full axiomatization of delayable processes in general requires a new opera-

tor. However, in the discrete-time probabilistic process algebra with delayable actions presented in
this thesis (Chapter 5) we take a different approach which does not need a new operator. In other
words, the probabilistic process algebra with discrete time and delayable actions does not constitute
an extension of the discrete-time process algebra with delayable actions in [108]. For that reason we

Chapter 2. Preliminaries 19

do not show more details of the latter. In the notation used above the superscript − stands for the
absence of delayable actions3.

Example 2.1.7. The specification given in Example 2.1.6 abstracts from any timing aspects of the
processes involved. In fact, process R as specified waits for a message sent by S for an unspecified
period of time. The specification only describes that if S sends a message R eventually receives it,
unless it gets damaged. If we think about a situation in which process R is not tremendously patient
but it waits for a message a limited period of time, say d time slices, then process R is specified as
follows:
R =

(

rt + σ1
rel(rt) + σ2

rel(rt) + . . . σd
rel(rt)

)

·R + σd+1
rel (patience out),

where σi
rel(p) denotes that σrel is applied i times. Thus, if S sends a message during (or after) the d+1

time slice even though Ch may deliver it correctly to R and without any delay, since R is not ready
to receive that message the whole process deadlocks.

2.2 Model(s) - operational semantics
Given a set of axioms of a certain process algebra PRA, it is possible to construct a model: a math-
ematical structure in which all operators of PRA have an interpretation and all axioms of PRA are
obeyed. Such a model usually is called a semantics of PRA. It is worth to highlight that one of the
aims of process algebra as a formal method is to develop a theory (method) that can be used in dif-
ferent models. Anyway, in the literature there is a tendency to use a model based on a term-deduction
system (also called an operational semantics), called term model, or a model based on a graph rep-
resentation, called a graph model. Even though the interpretation of terms of PRA differs in both
models (the domain of the term model consists of terms which can perform transitions according to
some given deduction rules, and in the graph model it consists of graphs and each graph is assigned
a relation (relations) over its set of states which defines transitions), they are very strongly related
because they are both based on a notion of bisimulation. It is not a surprising result in [27] that the
term model and the graph model of BPA + PR are isomorphic. In most of the cases occurring in the
thesis, we will work with the term model, except in Chapter 6 where we switch to the graph model.
We leave the introduction of the graph model for later and now we focus on the term models for the
theories presented in Section 2.1 - 2.7, from now on called the bisimulation model.

2.2.1 Stepwise construction of models
In order to give the main idea about constructing of the bisimulation model of a certain process
algebra PRA we present the main ingredients and the stepwise procedure of building up such a
model. Without going into many details, the bisimulation model of BPA will be defined and then it
will be extended to a model of any other algebra mentioned before.

1. The domain of the model is defined and its elements are called processes4. It may contain only
finite processes in which case we write PT(PRA) and we talk about a bisimulation model of
finite processes of PRA. The domain of PT(PRA) coincides with the set of closed terms

3Extension −ID stands for the absence of a special constant denoting immediate deadlock. In this thesis we do not
deal with this constant.

4Usually, in the term model they are called process terms or process expressions and in the graph model they are called
process graphs.

20 2.2. Operational semantics

over the signature of PRA without recursion. But in addition it may contain infinite processes,
which are introduced as solutions of guarded recursive specifications over PRA. In that case,
the set of processes is expanded by new constants, one for each solution of a guarded recursive
specification. Thus,< X|E > is a new constant denoting the solution of the guarded recursive
specification E with X as the root variable. In this case, we write explicitly PT

∞(PRA). We
write PT

(∞)(PRA) if a given statement holds for both PT(PRA) and PT
∞(PRA). It is also

quite obvious that PT(PRA) ⊆ PT
∞(PRA).

2. Transition relations, that actually describe process activities, are defined by means of deductive
rules given (usually) in Plotkin style (citePlo81. These rules define the way the transitions that
a process p can possibly perform, are characterized by the transitions of the sub-processes of p.
For the process algebras from Section 2.1 - 2.7 three types of transitions are used: a→ - an action
transition, a→ √ - an action termination (for a ∈ A) and in the semantics of timed systems the
the time transition σ→ is added5. The intended meaning of a transition p a→ q is that process
p can perform an action a and then it behaves like process q. Transition p a→ √ denotes that
process p can terminate by performing an action a. When building the bisimulation models of
the probabilistic process algebras a new type of transition will be introduced.

3. By having a method to describe process behaviour it becomes possible to relate and compare two
processes whose behaviour is described in the same semantics. Especially it is very important
to decide whether two processes behave in the same manner, or in other words, decide whether
they are equivalent. If two processes show equivalent behaviour then one of them could be
replaced by the other one as part of a bigger system (up to some additional consideration).
In such a way instead of a large system a significantly smaller system that shows the same
behaviour can be investigated.

Many different equivalence relations have been defined, each of them treating different aspects
of the behaviour of systems. A broad overview of different semantics and their comparisons
can be found in [57, 61]. A bisimulation [89, 93, 31], on which we focus in this thesis, relates
those processes that can match each other on every transition; after they both execute the same
action the processes reached have to be related as well.

As mentioned before, one of the reasons to equate processes is our intention to replace a process
by an equivalent one in a given context. But in order to do so the equivalence relation has to
satisfy certain properties: it has to be preserved by all operators of PRA, in other words, it has
to be a congruence. This property is stated in a so-called congruence theorem which in this
thesis will be formulated and proved for every presented process algebra and its semantics.

4. The bisimulation model of finite processesMPRA has as a domain the quotient set PT(PRA)/↔ .
The bisimulation model of infinite processes M∞

PRA has as a domain the quotient set
PT

∞(PRA)/↔ .

5. We say that PRA is complete for the modelMPRA if for every two processes that are bisimilar in
the model, the terms that represent them in PRA can be proved equal using the axioms in PRA.
In many cases the completeness property does not hold in general for all processes, but only
for finite processes that correspond to the closed terms in PRA. Therefore, the completeness
property can be formulated as: if p and q are closed PRA terms, then p↔ q ⇒ PRA ` p = q.

5While a→ and σ→ represent binary relations on the set of processes, a→ √ is a predicate on that set.

Chapter 2. Preliminaries 21

Below we give the formal definition of a (strong) bisimulation relation: the equivalence rela-
tion from which the quotient sets mentioned in 4. are obtained. For the untimed process algebras,
BPA(+PR), BPAδ(+PR), ACP only the clauses 1. and 2. are considered in the definition. The
definition of a bisimulation relation for discrete time process algebras has additionally the last clause
included.

Definition 2.2.1. Let R be a symmetric relation on the set PT
(∞)(PRA) such that:

1. If (s, t) ∈ R and s a→ p for some a ∈ A, then there exists q such that t a→ q and (p, q) ∈ R;

2. If (s, t) ∈ R and s a→√, then t a→ √;

3. If (s, t) ∈ R and s σ→ p, then there exists q such that t σ→ q and (p, q) ∈ R. 6

We say that R is a (strong) bisimulation. Processes s and t are bisimilar, s ↔ t, if there exists a
bisimulation R such that (s, t) ∈ R.

2.2.2 Model of BPA

The deduction rules for the bisimulation model of BPA are given in Table 2.9 where a is a variable that
ranges over A. We read the rules in the following way, for instance, the fourth rule reads: if process x
can perform a and afterwards behaves as x′, then process x+ y, for any y, can perform a as well and
afterwards it becomes x′. Thus, the activities of the smaller process x influence the activities of the
bigger process x+ y. One can notice that this rule has two conclusions: x+ y

a→ x′ and y + x
a→ x′.

This means that if the hypothesis of the rule, in this case x a→ x′ is true then both conclusions are true

as well. Actually, this is an abbreviation for two rules, namely,
x

a→ x′

x + y
a→ x′

and
x

a→ x′

y + x
a→ x′

.

This is the basic term-deduction system from which any other model is obtained by extension. In
[27] it is proved that the bisimulation model of finite processes is a model of BPA that is complete for
closed terms.

a
a→ √

x
a→ x′

x · y a→ x′ · y
x

a→√

x · y a→ y

x
a→ x′

x+ y
a→ x′, y + x

a→ x′
x

a→ √

x + y
a→√, y + x

a→ √

Table 2.9: Deduction rules for action transitions for BPA.

6This clause is included only for discrete time process algebras.

22 2.2. Operational semantics

2.2.3 Model of BPA + PR

The term-deduction system of BPA + PR is defined by the rules of BPA and the deduction rules
for the projection operator in Table 2.10. As we have mentioned, it is common to have projection
in a model if infinite processes are also part of it. Hence, we talk about the bisimulation model of
BPA + PR which contains infinite processes and therefore the rules given in Table 2.11 are added to
the term-deduction system.

The rules for the projection operator are rather intuitive. In the deduction rules for recursion (in
Table 2.11) by < tX |E > we denote the right-hand side of the equation X = tX in E with constants
< Y |E > substituted for variables Y . Recall that, if E is a guarded specification, < Y |E > exists
for every Y variable in E. These deduction rules express that the behaviour of process < X|E > is
determined by the behaviour of the process represented by the right-hand side of the equation of X
in E. In [27] it is shown that in the bisimulation model with infinite processes of BPA + PR every
guarded specification has a unique solution (a property later defined by means of recursive principles).

x
a→ x′

Πn+1(x)
a→ Πn(x′)

x
a→√

Πn(x)
a→√

x
a→ x′

Π1(x)
a→ √

Table 2.10: Action transitions for projection

〈tX |E〉 a→ x

〈X|E〉 a→ x

〈tX |E〉 a→√

〈X|E〉 a→√

Table 2.11: Action transitions for recursion.

Example 2.2.2. Consider once again the equation Ch = rf · (st + d) · Ch of Example 2.1.6. We
rewrite it as a recursive specification E with two equations:
Ch = rf · Chm

Chm = (st + d) · Ch.
Then by < Ch|E > and < Chm|E > we denote the processes that constitute the solution of E.
They behave in the following way: < Ch|E >

rf→< Chm|E > and this is the only transition that
< Ch|E > can perform; < Chm|E >

st→< Ch|E > and < Chm|E >
d→< Ch|E >. We agree that

this representation is not always easy to follow. For that reason in Figure 2.1 we show a graphical
representation of the behaviour of the process < Ch|E > (the process defined by E when Ch is the
root variable). State 1 corresponds to the process < Ch|E > and state 2 corresponds to the process
< Chm|E >.

2.2.4 Model of ACP
The operational semantics of ACP is defined by the deduction rules of BPA (Table 2.9) together with
the rules of the additional operators of ACP given in Table 2.12, where a, b, c range over A and
H ⊆ A.

Chapter 2. Preliminaries 23

rf
d

1

2

sf

Figure 2.1: Transition system representation of the process < Ch|E >.

The deduction rules in Table 2.12 express the interleaving characterization of the parallel compo-
sition. If one component of the parallel composition can perform an action a then the same holds for
the entire process. If the components can synchronize on an atomic action c then the parallel compo-
sition can perform a c transition. Note that the left merge and the communication merge are not used
to define the deduction rules for the merge operator. They were only needed in the axiomatization.

In the bisimulation model of ACP with recursion, every guarded specification has a unique solu-
tion. The model of finite processes is complete for the theory ACP (see e.g. [27]).

x
a→ x′

x ‖ y a→ x′ ‖ y, y ‖x a→ y ‖ x′
x

a→√

x ‖ y a→ y, y ‖x a→ y

x
a→ x′, y

b→ y′, γ(a, b) = c

x ‖ y c→ x′ ‖ y′

x
a→ x′, y

b→√, γ(a, b) = c

x ‖ y c→ x′, y ‖ x c→ x′
x

a→√, y b→√, γ(a, b) = c

x ‖ y c→√

x
a→ x′

x‖ y a→ x′ ‖ y
x

a→√

x‖ y a→ y

x
a→ x′, y

b→ y′, γ(a, b) = c

x | y c→ x′ ‖ y′
x

a→ x′, y
b→√, γ(a, b) = c

x | y c→ x′, y | x c→ x′
x

a→√, y b→√, γ(a, b) = c

x | y c→√

x
a→ x′, a /∈ H

∂H(x)
a→ ∂H(x′)

x
a→√, a /∈ H
∂H(x)

a→√

Table 2.12: Action transitions of ACP.

2.2.5 Model of Discrete-Time Process Algebra
The deduction rules that define the bisimulation model of BPA−

drt − ID comprise the rules of BPA for
the operators + and · given in Table 2.9 and the rules for action and time transitions of the additional
operators in Table 2.13. Note that the time transitions are included in this term-deduction system.
Certainly, the most interesting deduction rules are the ones for time transitions of alternative compo-
sition in Table 2.13. Here y 6 σ→ denotes that process y cannot idle. (More about negative premises will
be said in the following section.) The rule containing this premise expresses that if summand y of the
alternative composition cannot do a time transition but the other summand x can, then the alternative

24 2.3. Proof techniques

composition can do a time transition to the process reached from x by performing the transition. If
both summands can do a time transition then they do so synchronously.

Result concerning infinite processes and recursive principles in this theory can be found in [23].
The term-deduction system of ACP−

drt − ID contains the deduction rules of BPA−
drt − ID (Table

2.9+2.13), the rules for action transitions of ACP in Table 2.12 and the rules for time transitions of
the merge operators and the encapsulation operator given in Table 2.14. The additional rules define
time transitions for the merge operators and the encapsulation operator. For the merge operators we
can observe that composition (parallel, left merge or communication) of two processes can do a time
transition only if both components can do it as well.

a
a→ √

x
a→ x′

νrel(x)
a→ x′

x
a→√

νrel(x)
a→ √

σrel(x)
σ→ x

x
σ→ x′, y 6 σ→

x+ y
σ→ x′, y + x

σ→ x′

x
σ→ x′, y

σ→ y′

x+ y
σ→ x′ + y′

x
σ→ x′

x · y σ→ x′ · y

Table 2.13: Additional rules of BPA with discrete-time.

x
σ→ x′, y

σ→ y′

x ‖ y σ→ x′ ‖ y′
x

σ→ x′, y
σ→ y′

x‖ y σ→ x′‖ y′
x

σ→ x′, y
σ→ y′

x | y σ→ x′ | y′
x

σ→ x′

∂H(x)
σ→ ∂H(x′)

Table 2.14: Additional time transition rules of ACP−
drt − ID.

2.3 Proof techniques and notation
In this section, we introduce certain notational conventions that will be used through out the thesis.
Also we present three methods that will be used later for different purposes: a method based on
term-rewriting systems that will be used in proofs of the elimination property; two methods based on
analysis of term-deduction systems called a method of stratification and a method of reduction, that
will be used in the proofs of a conservative extension property used to prove a completeness property.

Used notation

p versus p Sometimes we will prefer to make a clear distinction between terms in the process
algebra PRA and the processes in its modelMPRA (Section 3.3.3 for instance). Thus, for the terms

Chapter 2. Preliminaries 25

in PRA we will use bold symbols, p,q, . . . and for the processes in the model we will use italic
symbols p, q, Many times without mentioning it we presume that x is an interpretation of x. But,
if it is clear from the context which objects we deal with, we use uniformly italic symbols for both.

Summation convention We will use the notation
∑

i∈I

ti to denote the summation over some finite

index set I = {1, 2, . . . , n}: ∑
i∈I

ti = t1 + t2 + . . . + tn. The summation over the empty set equals δ:
∑

i∈∅

ti = δ.

Operators over sets Let Σ be a signature. By O(Σ) we denote the set of terms over Σ. C(Σ)
denotes the set of closed terms over Σ.

If K1, K2, . . . , Kn, n ≥ 1 are subsets of terms over Σ and f is an n-ary operator in Σ, then we
define: f(K1, K2, . . . , Kn) = {f(k1, k2, . . . , kn) : ki ∈ Ki, 1 ≤ i ≤ n}.

Number of symbols If s is a closed term over Σ, by op(s) we denote the number of operators in s
defined as:

1. if s is a constant, then op(s) = 1;

2. if fn is an n-ary operator in Σ (for n ≥ 1) and s ≡ fn(s1, s2, . . . , sn) for closed terms
s1, s2, . . . , sn, then op(s) = op(s1) + op(s2) + . . .+ op(sn) + 1.

By ng(s) we denote the number of occurrences of the operator g in closed term s defined as: if g
is an m-ary operator in Σ, then

1. if s is a constant, m = 0 and s ≡ g then ng(s) = 1; otherwise ng(s) = 0;

2. if fn is an n-ary operator in Σ (for n ≥ 1), g 6≡ fn and s ≡ fn(s1, s2, . . . , sn) for closed terms
s1, s2, . . . , sn, then ng(s) = ng(s1) + ng(s2) + . . .+ ng(sn);

3. if s ≡ g(s1, s2, . . . , sm) for closed terms s1, s2, . . . , sm, then ng(s) = ng(s1) + ng(s2) + . . . +
ng(sm) + 1.

Action transitions In many given proofs we do not write down the parts which treat the action
transitions of the considered processes. These parts very much resemble the investigation of action
transitions done in the standard process algebras BPA and ACP. For example, on page 67 in the proof
of the Soundness theorem, we should prove that two processes (u+ v) +w and u+ (v+w) simulate
each other on action transitions. But this proof can be found in [27].

Closure of relations If α is a relation defined on set S, then by Eq(α) we denote the equivalence
closure of α on S.

If l→ is a transition relation, by l
=⇒ we denote the transitive and reflexive closure of l→.

Elimination property and a method to prove it The set of axioms of a given process algebra
PRA can be transformed into a term rewriting system (TRS) by giving direction to selected axioms
in the system. Then every reduction in the TRS corresponds to a derivation in PRA. The elimination
to basic terms property in process algebra PRA, formally defined below, expresses that from every

26 2.3. Proof techniques

closed term by use of the axioms of PRA a basic term can be derived. If we succeed to transform
our axiom system to a TRS in such a way that every reduction step in the TRS corresponds to an
application of the associated axiom and every derivation in which at least once an axiom from the
set of selected axioms is applied corresponds to a reduction in the TRS, then the problem of proving
the elimination property of PRA is transformed into the problem of proving strong termination of
the TRS. Furthermore, if the set of normal forms of the TRS is contained in the set of basic terms
of the PRA then the proof of the elimination to basic terms property of PRA is completed. In the
sequel, we sketch a method called lexicographical path ordering which gives sufficient conditions to
reduce the problem of strong normalization to a simple analysis of the rewriting rules in TRS. For
details about term rewriting systems and the method of lexicographical path ordering see [26, 83].
We assume that the reader has basic knowledge about TRSs.

Definition 2.3.1. (Elimination property) Let PRA be a process algebra with a defined set of basic
terms as a subset of the set of closed terms over PRA. Then PRA has the elimination to basic terms
property if for every closed term s of PRA there exists basic term t of PRA such that PRA ` s = t.

Definition 2.3.2. A term s0 is called strongly normalizing if does not exist an infinite series of
reductions beginning in s0. A TRS is called strongly normalizing if every term of it is strongly
normalizing.

In fact, strong normalization means that every term can be reduced to a normal form (i.e., a term
that cannot be reduced any further). Thus, if the TRS, obtained from our process algebra PRA as
described above, is strongly normalizing, the only problem to be treated is to show that the normal
form is a basic term. In this way the strong normalization property induces that every term in PRA
can be reduced to a basic term. Therefore, when constructing a TRS from axioms of PRA we assume
that every axiom of PRA is directed in such a way that it leads to a basic term. For instance, we
would have the rewriting rule: (x + y) · z → x · z + y · z because the right-hand side needs less
reductions to a basic term than the left-hand side. Take for example terms (a+ b) · c and a · c+ b · c.

The key step of the lexicographical path ordering method consists of generating a reduction rela-
tion on top of the TRS in a way defined below. Theorem 2.3.4 provides a solution to prove the strong
normalization property.

Definition 2.3.3. Let TR = (Σ, R) be a TRS. O∗(Σ) denotes a superset of the set of terms over TR,
O(Σ) where some symbols in Σ may be marked with ∗.

Let s, t ∈ O(Σ). We write s >lpo t if s →+ t where→+ is the transitive closure of the reduction
relation defined by the rules in Table 2.15 where H and G are symbols in Σ. We assume that > is a
given ordering on Σ.

Theorem 2.3.4 (Strong normalization). Let TR = (Σ, R) be a TRS with finitely many rewriting
rules and let > be a well-founded ordering on Σ. If s >lpo t for each rewriting rule s → t ∈ R, then
the term rewriting system (Σ, R) is strongly normalizing. �

Conservative extension and methods to prove it based on term-deduction systems When devel-
oping theories in a modular way it is interesting and important to know whether the same equation
in the basic (smaller) theory PRA0 are preserved in the extended (bigger) theory PRA1. More pre-
cisely, suppose that the signature of PRA1 is an extension of the signature of PRA0 and that every
axiom of PRA0 is an axiom of PRA1. Therefore, the set of terms of PRA0 is a subset of the set

Chapter 2. Preliminaries 27

RPO1. H(t1, . . . , tk)→ H∗(t1, . . . , tk), for k ≥ 0
RPO2. H∗(t1, . . . , tk)→ G(H∗(t1, . . . , tk), . . . , H

∗(t1, . . . , tk)), for H > G, k ≥ 0
RPO3. H∗(t1, . . . , tk)→ ti, for k ≥ 1, 1 ≤ i ≤ k
RPO4. H∗(t1, . . . , G(s1, . . . , sl), . . . , tk)→ H(t1, . . . , G

∗(s1, . . . , sl), . . . , tk), for k ≥ 1, l ≥ 0
RPO5. s→ t⇒ H(. . . , s, . . .)→ H(. . . , t, . . .)
LPO. t ≡ H∗(t1, . . . , ti−1, G(s1, . . . , sl), ti+1, . . . , tk)

⇒ t→ H(t, . . . , t, G∗(s1, . . . , sl), t, . . . , t), for k ≥ 1, 1 ≤ i ≤ k, l ≥ 0

Table 2.15: Lexicographical path ordering.

of terms of PRA1. Also, every equation t = t′ between some PRA0 terms t and t′, which can be
derived in PRA0 can be derived in PRA1 as well. If no other equations between terms of PRA0 can
be derived in PRA1 we say that PRA1 is a conservative extension of PRA0. We believe that any
further justification of the importance of this property is not needed. The formal definition is given
below. It also contains the definition of the elimination property to a basic (smaller) theory.

Definition 2.3.5. Let PRA1 with a signature Σ1 be an extension of process algebra PRA0 with a
signature Σ0. PRA1 is an equationally conservative extension of PRA0 if for all s, t ∈ C(Σ0)

PRA1 ` s = t⇔ PRA0 ` s = t.

If for all s ∈ C(Σ1) there is a t ∈ C(Σ0) such that PRA1 ` s = t we say that PRA1 possesses the
elimination property for PRA0.

A method to prove the equationally conservative extension property, that will be used in this thesis,
has been formulated in [107] (see e.g. [26, 48]). One of the conditions that guarantees this property is
an operationally conservative extension property. While the equational conservativity expresses a link
between two theories, the operational conservativity expresses a relation between their operational
semantics. It expresses that the transitions between process terms of the basic (smaller) semantics
are not effected by the extension. In the sequel, we state a theorem that captures the main conditions
that guarantee the operationally conservative extension property, preceded by a few basic notions for
term-deduction systems.

Formally, a term-deduction system (TDS) is a structure (Σ, D) with Σ a signature and D a set
of deduction rules. The set D is parametrized by two sets, the set of predicate symbols, Tp, and the
set of relation symbols Tr. For (open) terms s, t, u over the signature Σ, P ∈ Tp and R ∈ Tr, the
expressions Ps, ¬Ps, tRu and t¬R are called literals (or formulas); Ps and tRu are called positive
and ¬Ps and t¬R are called negative literals. In the TDSs presented earlier in this chapter we used
a→ and σ→ as relation symbols and a→ √ as a predicate symbol. A deduction rule d ∈ D has the form:
prem

c
with prem a set of literals called premises (hypotheses), which can be positive or negative.

The set of positive premises is denoted by pprem(d) and the set of negative premises by nprem(d).
c is a positive literal, called the conclusion of d, denoted conc(d). If a deduction rule does not contain
negative premises we say that it is a positive deduction rule; otherwise it is negative. If a TDS does
not contain deduction rules with negative premises we say that it is a positive TDS; otherwise it is
negative.

If d is a positive rule for which prem = {Pjsj : j ∈ J} ∪ {tiRiyi : i ∈ I}, for I and
J are arbitrary index sets, and the conclusion c has one of the forms: f(x1, . . . , xn)Rt or xRt or

28 2.3. Proof techniques

Pf(x1, . . . , xn) or Px, where ti, sj, t ∈ O(Σ), Pj, P ∈ Tp, Ri, R ∈ Tr for all i ∈ I and j ∈ J and
where f ∈ Σ is an n-ary function symbol and x1, x2, . . . , xn, x, yi for i ∈ I , are distinct variables, we
say that d is in path format. We write Y = {yi : i ∈ I} and X = {x1, x2, . . . , xn} if c has the form:
f(x1, . . . , xn)Rt or Pf(x1, . . . , xn), and X = {x} if c has the form xRt or Px. By var(d) we denote
the set of all variables occurring in d. If var(d) = X ∪Y we say that d is pure. A (positive) TDS is in
(pure) path format if all its deduction rules are in (pure) path format. Furthermore, the variables that
occur in the premises of d are related in the following way: x→ y iff there is a tRs ∈ prem(d) such
that x ∈ var(t) and y ∈ ar(s). If for a given rule d there are no infinite backward chains of variables
related by the relation → we say that d is well-founded. A TDS s well-founded if all its rules are
well-founded.

An extension of TDS T 0 = (Σ0, D0) with a TDS T 1 = (Σ1, D1) is defined through an extension
of its signature and the set of deduction rules. The signature Σ1 can extend Σ0 only if it preserves the
arity of the operators of Σ0; if f is an operator in both signatures, then it has the same arity in both of
them. The extended signature is denoted by Σ0 ⊕ Σ1. Then, the extension of T 0 with T 1, denoted by
T 0⊕T 1, is defined as (Σ0⊕Σ1, D0∪D1). Let T (Σ, D) = T 0⊕T 1 be an extension of T 0 = (Σ0, D0)
with T 1 = (Σ1, D1) and let D = D(Tp, Tr).

Definition 2.3.6. The term-deduction system T is an operationally conservative extension of T 0 if
for all s, u ∈ C(Σ0), for all relation symbols R ∈ Tr and predicate symbols P ∈ Tp, and for all
t ∈ C(Σ) we have

sRt in T if and only if sRt in T 0, and
Pu in T if and only if Pu in T 0.

We observe that the definition of operationally conservative extension only includes preserving
transitions of one process from T 0 when it is considered as a process in the extended system T . How-
ever, we said that every operational semantics involves an equivalence relation, in our case bisim-
ulation, that equals processes on the semantical level. Naturally, when T 0 is extended to T , the
equivalence relation, say ≈T 0 , defined on T 0 is lifted to an equivalence relation on T , say ≈T . The
operationally conservative extension of T0 up to ≈T 0 means that ≈T restricted on terms on T0 equals
≈T 0 ; terms of T0 cannot be related by ≈T if they are not related by ≈T 0 . Formally,

Definition 2.3.7. If for all s, t ∈ C(Σ0), s ≈T t iff s ≈T 0 t we say that T is an operationally
conservative extension f T 0 up to ≈ equivalence, where ≈ is an equivalence elation on C(Σ) defined
in terms of relation and predicate symbols only. The subscripts T and T 0 express in which system the
relation is defined.

Now we have all the prerequisites to give a theorem providing us with sufficient conditions so that
a TDS is an operationally conservative extension of another TDS. The following theorem is valid only
for positive TDSs and it will be used in Section 4.3.1.

Theorem 2.3.8 (Operationally conservative extension). Let T 0 = (Σ0, D0) be a pure well-founded
TDS in path format. Let T 1 = (Σ1, D1) be a TDS in path format. If there is a conclusion sRt or
Ps of a rule d1 ∈ D1, with s = x or s = f(x1, . . . , xn) for an f ∈ Σ0, we additionally require that
d1 is pure, well-founded, t ∈ O(Σ0) for premises tRy of d1, and that there is a premise containing
only Σ0 terms and a new relation or predicate symbol. Then if T = T 0 ⊕ T 1 is defined, then T is an
operationally conservative extension of T 0. �

Chapter 2. Preliminaries 29

Theorem 2.3.9 (Operationally conservative extension up to equivalence). Let T 0 = (Σ0, D0) and
T 1 = (Σ1, D1) be two TDSs and let T (Σ, D) = T 0⊕T 1 be defined. If T is an operationally conserva-
tive extension of T 0 then it is also an operationally conservative extension up to≈ equivalence, where
≈ is an equivalence relation defined exclusively in terms of predicate and relation symbols. �

However, in Section 5.4 the operational semantics considered will be defined by means of negative
TDSs. The results shown earlier are not applicable in this case. The technique for proving the con-
servative extension property for that type of TDSs has been formalized in [65, 43] (see e.g. [60, 1, 2].
Basically, it is a combination of two methods: the method of general conservative extension (based
on stratification) (see e.g. [107, 26, 48]) and the method of reduced term-deduction systems [65, 43].

While positive TDSs cannot lead to any confusion (as shown above elegant and simple results can
be used to prove important properties of them) this is not the case if negative information appears in

the premises. Take for instance the rule
c 6 a→
c

a→ c′
where c and c′ are constants from some signature.

One may argue that a TDS containing this rule is meaningless and inconsistent (see e.g. [60]) since
it cannot be decided whether the relation defined by the TDS contains transition c

a→ c′ or not.
Therefore, the very first question needed to be resolved in case of negative TDSs is if the TDS under
consideration is meaningful and which transition relation it defines.

Stratification method The stratification method that has been shown very useful for proving con-
servativity of negative TDSs is intuitive and easy to check. It is based on the notion of stratification
(defined below), a mapping by which the transitions are ordered in different layers, called strata,
depending on the complexity of the premises of the rule for which the desired transition is its conclu-
sion. Stratification guarantees that no transition depends negatively on itself and that the validity of
a negative transition can be determined only if the validity of all transitions occurring in the earlier
strata is known. Note that each positive TDS is trivially stratified by putting all literals in stratum to
0.

Definition 2.3.10. Let PP (T) be the set of all closed positive formulas over T . A mapping S :
PP (T)→ α for an ordinal α is called a stratification for T if for all deduction rules d ∈ D and closed
substitutions σ the following conditions hold. For all φ ∈ pprem(d), S(σ(φ)) ≤ S(σ(conc(d))); for
all s¬R ∈ nprem(d), for all t ∈ C(Σ) : S(σ(sRt)) < S(σ(conc(d))); for all ¬Ps ∈ nprem(d),
S(σ(Ps)) < S(σ(conc(d))). A TDS is called stratifiable if there exists a stratification for it.

Even though the stratification technique is intuitive and often applicable, it is restrictive and cannot
be applied to our TDS in Section 5.5.1. There we will exploit the more powerful technique of reduced
TDSs. It is stronger than the method of stratification but for practical purposes it is useful to combine
these two methods. In this brief introduction to this method we follow the line of [65, 43]. In [60]
the reader can find an extensive review of several methods to associate a transition relation to a TDS.
Amongst others, the author treats this approach and compares it with the other proposed methods.

Reduction method In order to keep the original presentation of the method (original definition and
results as occurring in [43, 65]) we consider TDSs with only relation symbols. It is easy to see that any
predicate symbol can be transformed into a relation symbol by adding a new constant to the signature.
Then the rules of the TDS have to be transformed too with respect to the following equivalence:

Pt⇔ tRPaP ,

where RP is a fresh relation symbol and aP is a fresh constant associated to the predicate symbol P .
In such a way considering only TDSs with relation symbols does not make any restriction.

30 2.3. Proof techniques

The idea of the reduction method is the following. For a given TDS T , the set of transitions is
partitioned into three groups: those that are certainly true, those that are certainly not true and those
of which the truth is unknown (it is also called 3-value method). Using this information the TDS T
is reduced to another TDS that specifies the same transition relation. In the new TDS, the truth and
falsity of more transitions may become certain. Repeated reduction may lead to complete information
and give the transition relation associated to the original TDS. A transition relation associated to a
TDS is defined in terms of an operator Strip on TDSs. For transition relation →, Strip(T,→) is
a TDS obtained from T by removing all rules with negative premises that do not hold in→ and by
removing from the remaining rules the negative premises that do hold in →. This yields a positive
TDS whose associated transition relation is defined. Then T is stable for → if it is equal to the
associated transition relation to Strip(T,→). (Different concepts of stability are also given in [60].)
Precise definitions are given in the sequel.

Definition 2.3.11. Let A be a set of labels.

• A transition relation→⊆ C(Σ)× A× C(Σ) is a supported model of T f:

φ ∈ →⇐⇒ ∃d ∈ D and substitution σ such that:
{

−→ |= prem(σ(d))
conc(σ(d)) = φ.

→ is a model of T if “⇐” holds; T is supported by→ if “⇒” holds.

• The transition relation→T associated with a positive TDS T is the least model of T .

• Strip(T,→) = (Σ, Strip(D,→)), where

Strip(D,→) =
{

d′ : ∃d ∈ D :→ |= nprem(d) & d′ =
pprem(d)

conc(d)

}

.

• A transition relation→ is stable for TDS T if→ is the associated relation to Strip(T,→).

• If there is a unique transition relation→ stable for T , then→ is the transition relation associated
with T .

Reduction of a TDS is obtained by means of two positive TDSs: True(T) and Pos(T). True(T)
determines the transitions that are certainly true: they can be proved with positive rules only. Pos(T)
determines the transitions that are possibly true, that is, they are true or unknown. These are transitions
that can be proved ignoring the negative premises. Thus Pos(T) is obtained from T by removing
all negative premises. A reduction step is defined by Definition 2.3.12 and the iterative method of
reduction is given in Definition 2.3.14.

From now on, the set of rules D for TDS T = (Σ, D) will be identified by the set of closed
instances of rules in D.

Definition 2.3.12. Let→true and→pos be transition relations on C(Σ).

Reduce(T,→true,→pos) = (Σ, Reduce(D,→true,→pos)),

where

Reduce(D,→true,→pos) =
{

d′ : ∃d ∈ D :→true |= nprem(d),→pos |= pprem(d) &

d′ =
{ψ ∈ pprem(d) :→true 6|= ψ} ∪ {ψ ∈ nprem(d) :→pos 6|= ψ}

conc(d)

}

.

Chapter 2. Preliminaries 31

Definition 2.3.13. True(T) = (Σ, T rue(D)) where True(D) = {d ∈ D : nprem(d) = ∅}.

Pos(T) = (Σ, P os(D)) where Pos(D) =
{

d′ ∈ D : ∃d ∈ D : d′ =
pprem(d)

conc(d)

}

.

Definition 2.3.14. For every ordinal α, the α-reduction of T , notation Redα(T) is recursively efined
as follows:

- Red0(T) = (Σ, Dclosed) where Dclosed is the set of all closed instances of rules in D;

- Redα(T) = Reduce(T,
⋃

β<α

→True(Redβ(T)),
⋂

β<α

→Pos(Redβ(T))).

Combining stratification and reduction Finally, the way the two methods can be combined is given
below. Combined reduction with stratification may lead to a desired result “faster” than the reduction
method applied only. As soon as a stratified TDS is achieved by reduction, the iteration may stop. The
main result used to prove the conservative extension property of the TDS in Section 5.5.1 is stated in
Theorem 2.3.17.

Theorem 2.3.15 (Stratification and reduction). Let T = (Σ, D) be a TDS with stratification S :
PP (T)→ α. Then Redα is a positive TDS. �

Lemma 2.3.16. Let T = (Σ, D) be a TDS and suppose that for some ordinals α and β, S : PF (T)→
α is a stratification of Redα(T). Then Redα+β(T) is a positive TDS and −→Redα+β(T) is associated
with T . �

Theorem 2.3.17 (Conservative extension with reduction). Let T 0 = (Σ0, D0) be a pure TDS and let
T 1 = (Σ1, D1) be a TDS such that each rule d ∈ D1 contains at least one function name f /∈ Σ0 in
the source7 of its conclusion. Furthermore, assume that T 0⊕T 1 exists and is positive after reduction.
Then T 0 ⊕ T 1 is a (operational) conservative extension of T 0. �

We have to point out that the notion of “positive after reduction” is proved equivalent to the notion
of “complete TDS” in [60]. However, we decided to resent the material as given in [65] to give the
reader the original version of Theorem 2.3.17, the main result needed in Section 5.4.

The following theorems show the relation between the operationally conservative extension prop-
erty and the equationally conservative extension property.

Definition 2.3.18. Let L0 = (Σ0, E0) and L1 = (Σ1, E1) be two equational specifications and let
Σ0 ⊕Σ1 be defined. The sum L0⊕1 of L0 and L1 is the equational specification (Σ0 ⊕ Sigma1, E0⊕
E1).

Definition 2.3.19. Let L0 = (Σ0, E0) and L0 = (Σ0, E0) be two equational specifications and let
Σ0 ⊕ Σ1 be defined. L is an equationally conservative extension of L0 if for all s, t ∈ C(Σ0)

L ` s = t⇔ L0 ` s = t.

7The left argument of a transition.

32 2.3. Proof techniques

Theorem 2.3.20 (Equationally conservative extension). Let L0 = (Σ0, E0) and L1 = (Σ1, E1) be
two equational specifications and let L = (Σ, E) = L0 ⊕ L1 be defined. Let T0 = (Σ0, D0) and
T1 = (Σ1, D1) be term-deduction systems and let T = T0 ⊕ T1. Let ϕ be an equivalence relation that
is definable in terms of predicate and relation symbols only. Let L0 be a complete axiomatization with
respect to the ϕ equivalence model induces by T0 and let L be a sound axiomatization with respect to
the ϕ equivalence model induced by T . If T is an operationally conservative extension of T0 up to ϕ
equivalence, then L is an equationally conservative extension of L0. �

Theorem 2.3.21 (Complete axiomatization). If in addition to the condition of Theorem 2.3.20 the
equational specification L has the elimination property for L0, then E is a complete axiomatization
with respect to the ϕ equivalence model induced by the term-deduction system T . �

Chapter 3

Basic Probabilistic Process Algebra

3.1 Introduction

Random behaviour of processes in the framework of process algebra is captured by the probabilistic
choice operator. This operator allows the explicit specification of probabilistic aspects in a way that
it expresses (quantitatively) a probability distribution over a set of possible events/behaviours.

The probabilistic choice operator employed in the present thesis is closely related to the partial
choice operator in [18] where the authors, besides the standard non-deterministic choice, introduce
two more alternative composition operators: static or partial alternative composition t and collecting
alternative composition t. The difference between these three operators is the moment when the
choice is made. The non-deterministic choice is made at the same moment when the first action is
executed. The collecting choice is made at the very beginning before any action in the entire process
has been performed. And the partial choice is between these two: it is made before the first action
occurs, but the exact moment is not known. That is, there is an internal behaviour of the process
which determines the outcome of the choice p tq which takes place before p or q performs any
action. Thus, the outcome of this choice cannot be influenced by the environment, but it can be only
observed. We reason in the same way about the probabilistic choice with the only difference that there
is more quantitative information available for the possible outcomes. Namely, the random behaviour
of the process is the result of some uncertain internal behaviour which cannot be affected and does
not interact or depend on the environment. For that reason it is called internal probabilistic choice,
as opposed to the external probabilistic choice which assumes that the environment determines which
of the possible processes are enabled. Also, “the (internal) probabilistic choice allows the designer to
abstract away from the details of how choices are made, but still provides information on the outcome
of the choice [71]”.

We would like to point out that the internal probabilistic choice operator has roots in the standard
non-probabilistic algebras as well. In particular, there have been attempts to encode random behaviour
in non-probabilistic ACP using non-determinism and internal actions. For instance, in ACP a lossy
channel C is usually specified as C = (i · tr + i · lose) · C, where tr and lose are atomic actions
meaning “the transmission is successful” and “the channel fails”, respectively (see e.g., [27]). The use
of the internal action i is quite intuitive. We repeat that no quantitative information can be specified
in this way. Now, the presence of the probabilistic choice operator gives a possibility to specify the
quantitative information of the failure of a system and besides to hide the internal action i making it
an integrated part of the operator.

In this chapter, we develop so-called Basic Probabilistic Process Algebra. Several basic process
algebras with probabilistic choice will be introduced and we restrict ourselves to the treatment of

33

34 3.2. Basic Process Algebra

the basic operators only. The issues involving parallel composition are complex enough to justify
dedicating a whole chapter to them: Chapter 4.

The chapter is organized as follows. First, a fully probabilistic process algebra is introduced in
which the non-deterministic choice operator is omitted and the probabilistic choice operator is added.
In the next section we present a probabilistic process algebra with the notion of non-determinism
in two variants, with and without projection operators. In Section 3.3 we describe the bisimulation
model of the process algebras introduced earlier. We define a probabilistic bisimulation relation and
construct a model based on this relation with and without infinite processes. For the first model
with infinite processes we prove that the RSP principle (pg. 41) holds, and for the second model
(containing only finite processes) we prove a completeness property.

3.2 Basic Process Algebras
We introduce several probabilistic basic process algebras working again in a modular way. We begin
with a process algebra with no notion of non-determinism, and conclude by an algebra that can cope
with both probabilities and non-determinism and which is equipped with the notion of deadlock.

3.2.1 Fully Probabilistic Basic Process Algebra
In this section, we present a fully probabilistic process algebra. It is the smallest algebra considered
in the thesis. The non-deterministic choice is not present, instead, we have a probabilistic choice op-
erator. Due to the absence of the non-deterministic choice all choices between processes are supposed
to be probabilistic; they are supposed to be resolved according to some probability distributions. It is
obvious that this approach is based on discrete-time Markov chains.

Even though non-determinism should be present in the formalism for many reasons, it is quite
useful to investigate fully probabilistic methods. A widely accepted approach to analyze systems
with both non-determinism and probabilistic behaviour attempts to resolve all occurrences of non-
determinism by means of (probabilistic or deterministic) schedulers. Applying a scheduler to a sys-
tem, the resulting process is fully probabilistic. Also, seen as an extension of Markov chains the fully
probabilistic approach can be used to specify, for instance, the probabilistic behaviour of sequential
randomized algorithms.

Formally, the signature of Fully Probabilistic Basic Process Algebra fpBPA consists of a (finite)
set of constants, A = {a, b, c, . . .} and the binary operators: · operator for sequential composition and
tπ operator for probabilistic choice, for each π ∈ 〈0, 1〉. The set of axioms consists of the laws given

in Table 3.1.

(x · y) · z = x · (y · z) A5

x tπy = y t1−πx PrAC1
x tπ(y tρz) = (x t π

π+ρ−πρ
y) tπ+ρ−πρz PrAC2

x tπx = x PrAC3
(x tπy) · z = x · z tπy · z PrAC4

Table 3.1: Axioms for probabilistic choice operator.

Chapter 3. Probabilistic Process Algebra 35

Intuitively, the term x tπy represents a process that behaves like x with probability π and behaves
like y with probability 1 − π. We do not permit a zero probability. Now, flipping a coin may be
represented by the term: s ≡ flip·(head tπtail). So, the probability distribution {head 7→ π, tail 7→
1 − π} is an integrated part of the probabilistic choice operator. The interpretation of the actions:
flip, head and tail is clear. If it is a fair coin, then π = 1/2. It is the same if we write t ≡
flip · (tail t1−πhead) which is declared by the axiom PrAC1. Axiom PrAC2 expresses that the
grouping of the components is irrelevant as long as the probability distribution over the set of all
possibilities does not change1. This axiom also has a variant, as follows:

(x tπy) tρz = x tπρ(y t (1−π)ρ
1−πρ

z) PrAC2′.

Axiom PrAC3 says that if there are two possibilities which cannot be distinguished, then the
probability distribution does not play any role. For example, if the coin above has head on both sides,
then independently on the probability π the outcome of the flip will always be head, in other words
“head” shows with probability 1.

If we consider a slightly different term than s, namely, s′ ≡ flip · (head t1/2tail) · stop where
stop denotes an action of finishing the flipping, then the axiom PrAC4 expresses that s′ does not
differ from the term r′ ≡ flip · (head · stop t1/2tail · stop) because whatever the outcome of the flip
is, the process reaches the end denoted by the stop action. Note that the probability distribution over
{head, tail} induces the probability distribution on {head · stop, tail · stop} in a unique way.

However, the terms s and r ≡ flip · head t1/2flip · tail are not considered equal because in
the former case the choice between head and tail may be resolved after the flip action is executed,
which is not possible in the second case. The term r corresponds to a trial with two unfair coins,
one which always gives head and the other one always gives tail. The probability to choose one
of them in the beginning of the experiment is exactly 1/2 for each of them. Once a coin is chosen,
the outcome of the flip is determined. For the reasons mentioned before the left distributive law:
x · (y tπz) = x · y tπx · z is not present in our axiomatization; thus we cannot derive s = r.

We introduce abbreviations in order to deal with probabilistic sums of several arguments:

x1 tπ1x2 tπ2x3 ≡ x1 tπ1(x2 t π2
1−π1

x3) (π1 + π2 < 1)

x1 tπ1x2 tπ2x3 tπ3x4 ≡ x1 tπ1(x2 t π2
1−π1

x3 t π3
1−π1

x4) (π1 + π2 + π3 < 1), etc.

This notation explicitly gives the probability with which a process behaves as one of its components.
For example, the terms x1 tπ1x2 tπ2x3 tπ3x4 represents a process which behaves as the process
represented by xi, i = 1, 2, 3 with probability πi and as the one represented by x4 with probability
1− π1 − π2 − π3.

Example 3.2.1. The process of throwing a fair die can be specified in the following way. If the
number of spots shown on the die is specified by an atomic action number, which may be “one”,
“two”, “three”, “four”, “five” and “six”, then the desired process is specified by the fpBPA term:
toss · (one t1/6 two t1/6 three t1/6 four t1/6 five t1/6 six) since it is a fair dice.

3.2.2 Basic Probabilistic Process Algebra
When considering concurrent processes the concept of non-determinism is necessary to describe the
asynchronous character of interleaving parallel composition. One may argue that in the presence

1In some probabilistic models, the stratified model for example, this axiom does not hold.

36 3.2. Basic Process Algebra

of probabilistic choice every non-deterministic behaviour can be specified as a probabilistic one by
taking some probability distribution (very often an uniform distribution is suggested) over the set
of alternatives (see e.g. [98]). In the previous section we explained that in those cases where non-
deterministic choice is used because of lack of more appropriate specification techniques this replace-
ment is more than welcome (see Example 3.2.4). However, an attempt to describe interleaving of
parallel components (in an asynchronous manner) with probability distribution has been done in [17],
but probabilities assigned to possible alternatives have not been given any intuitive meaning.

Therefore we need a more expressive model which is able to describe both probabilistic and
non-deterministic behaviour. To that purpose, we add the notion of alternative composition (non-
determinism) to the fully probabilistic process algebra from the previous section by adding the alter-
native composition operator +.

The signature of Basic Process Algebra with Probabilistic Choice (without deadlock) pBPA−δ

consists of the signature of fpBPA and the non-deterministic choice operator + (alternative composi-
tion). The laws for + are given in Table 3.2. Basically (without axiom PrAC5) it is the set of axioms
of BPA except that the A3 axiom is replaced by AA3 (see Remark 2.1.1). Axiom A3 is restricted
because it does not hold anymore for processes involving the probabilistic choice operator as will be
shown in Example 3.2.3. To conclude, the set of axioms of pBPA−δ contains the axioms in Table 3.2
and the axioms of fpBPA given in Table 3.1.

x + y = y + x A1
(x+ y) + z = x + (y + z) A2
a+ a = a AA3
(x+ y) · z = x · z + y · z A4
(x tπy) + z = (x + z) tπ(y + z) PrAC5

Table 3.2: Axioms for non-determinism in probabilistic setting.

Remark 3.2.2. To repeat once again, the non-deterministic choice between processes p and q, p+ q,
is resolved at the same moment when one of the two processes performs the first action. Conversely,
the probabilistic choice between processes p and q, p tπq, is resolved before the first action of p or q
is executed and the exact moment is not known. What is known is the expectation that the first action
is performed by p (or by q). Thus, one expects to observe an action performed by p in π · 100% of the
cases and an action performed by q in (1− π) · 100% of the cases.

In fact, the statement above says that the probabilistic choice has priority over the non-
deterministic choice. Namely, the summands u and z of the non-deterministic choice u + z first
have to resolve their probabilistic choices (if such exist) before the choice u + z is resolved. In such
a way, the non-deterministic choice appears to be a choice between the offered outcomes of the prob-
abilistic behaviour of u and z. Thus, if u ≡ x tπy and for simplicity assume that z does not contain
any probabilistic choice, then in a π fraction of the cases the non-deterministic choice u+ z becomes
x + z and in 1 − π cases it becomes y + z. This is exactly formulated by the axiom PrAC5: no
distinction is made between (x tπy) + z and (x + z) tπ(y + z) since in both cases the probabilistic
choice has to be resolved before the non-deterministic choice(s). This approach to the interplay of
the probabilistic and non-deterministic choice is also taken in [71]. The difference with that approach
occurs in the interpretation of parallel composition (see Chapter 4).

Chapter 3. Probabilistic Process Algebra 37

3.2.3 Deadlock
This section introduces an extension of pBPA−δ with the inaction process (sometimes called deadlock
process). It is done by adding a new constant (as it was done in Chapter 2), denoted δ, which stands
for a process which with probability 1 does nothing; neither executes an action, nor terminates suc-
cessfully. The axioms that define δ are given in Table 3.3. One can note that the deadlock constant is
defined in the same way as in the non-probabilistic setting. This shows that in our approach this con-
stant does not have any special role with respect to the probabilistic choice, as opposed to the special
role in BPAδ, where it is the zero element with respect to the non-deterministic choice operator. Since
axiomA6 is included in the system, δ occurs as the zero element with respect to the non-deterministic
choice operator in the probabilistic setting as well.

x+ δ = x A6
δ · x = δ A7

Table 3.3: Axioms for inaction.

Various interpretations of the deadlock process (fail) in combination with probabilistic and non-
deterministic choice can be found in [72, 73].

At this point we have completed the introduction of the basic process algebra which will be the
core of the extensions with parallel composition (Chapter 4) and time (Chapter 5). This process
algebra will be denoted by pBPA. To conclude, pBPA has signature ΣpBPA = (Aδ, ·,+, tπ) and the
axioms given in Table 3.1+3.2+3.3.

Algebra fpBPA can be extended with the deadlock constant in an obvious way, by adding the
constant δ and the axiom A7.

Example 3.2.3. We have not explained yet the reason why axiom A3 is replaced by AA3. Let us
consider the following term: p ≡ a t 1

2
δ. It represents a process that deadlocks with probability 1/2.

If we consider the non-deterministic choice of two alternatives p and p, then we derive that
pBPA ` (a t 1

2
δ) + (a t 1

2
δ)

PrAC5
= (a+ (a t 1

2
δ)) t1/2(δ + (a t 1

2
δ))

A1
=

((a t 1
2
δ) + a) t1/2((a t 1

2
δ) + δ)

PrAC5,A6
=

(

(a + a) t 1
2
(δ + a)

)

t1/2(a t 1
2
δ)

AA3,A6
=

(a t 1
2
a) t1/2(a t 1

2
δ)

PrAC3
= (a t 2

3
a) t 3

4
δ

PrAC3,P rAC2
= a t 3

4
δ.

Therefore, this process deadlocks with less probability than p does . So, we can not always
consider p and p + p to be equal. One can note that this phenomenon occurs due to the interplay of
probabilistic and non-deterministic choice taken in our approach. �

Example 3.2.4. Consider again the communication channel from Example 2.1.2. What can be
specified in pBPA is the failure behaviour of the channel but additionally the quantitative aspects of
that behaviour can be modelled as well. Assume that the channel fails once in 100 trials. Moreover,
assume that two different types of messages (0 and 1) can be sent through the channel. Of course,
the channel has to accept any message no matter which type it is. The behaviour of this channel is
specified by the following pBPA term: Chp = (rf0 + rf1) · (st t0.99d) where rf0 means a receipt
of a message of type 0. And similar for rf1. The other constants have the same meaning as before.
The choice between rf0 and rf1 is non-deterministic. Replacing this choice by a probabilistic one,
say tπ , would mean that the channel decides (with certain probability) which type of message to
accept and pass on. Indeed, it leads to a situation in which the channel “refuses” to transmit a certain
message and the whole process (including sending and receiving components) fails.

38 3.2. Basic Process Algebra

3.2.4 Projection in pBPA and recursion
In pBPA we introduce the notions of recursion and guardedness in a similar way as it is done in BPA
(as briefly introduced in Chapter 2). Recall that we use recursion to introduce infinite processes.
Presence of probabilities does not change the concept of guardedness significantly with respect to
non-probabilistic methods. However, it is worth to mention that in many cases an unguarded recursive
specification that contains probabilistic choice determines a unique process provided it is given the
“right” and still intuitive characterization. Take, for example, the equation X = a tπX . Though it is
not guarded, the solution of this equation cannot be anything else than a. Just to compare, the equation
X = a + X does not have a unique solution in a model of BPA (the graph model for instance). This
positive character of equation X = a tπX , and similar equations, results from the mathematical
interpretation of the equations. Seen as a discrete-time Markov chain, where a may mean a state
in which event a will happen, we may profit from the Markov chain theory and explore a subset
of unguarded specifications that have a unique solution (see [102] and also [3]). We will explore a
similar question in Chapter 6 where again an equation like X = a tπX will not be considered but a
particular format of guarded recursive specifications resembling it. Therefore, although challenging
to consider unguarded recursion we rule out it and consider only guarded recursive specifications.

Next we define projection by introducing a new operator, called the projection operator. Projec-
tion will be used to approximate infinite processes; namely the n-th projection of a process p is a
process that behaves exactly like p till at most n steps are executed. In other words, if we picture pro-
cess p as an infinite tree of transitions (transitions occur as edges of the tree), then the n-th projection
is the finite subtree of it that contains all action transitions with depth at most n.

Probabilistic basic process algebra with projection, pBPA +PR, is an extension of pBPA with the
projection operator. The axioms for this operator are given in Table 3.4.

Πn(a) = a PR1
Π1(a · x) = a PR2
Πn+1(a · x) = a ·Πn(x) PR3
Πn(x + y) = Πn(x) + Πn(y) PR4
Πn(x tρy) = Πn(x) tρΠn(y) prPR

Table 3.4: Axioms for projection operator, n ≥ 1

Recursion In the following, we formally characterize the notion of recursion, recursive specifica-
tion and guardedness. The given definitions refer to the pBPA + PR theory, but they can be easily
adapted to other process algebras, the probabilistic process algebras pBPA and pACP+ as well as
non-probabilistic algebras BPA, BPA + PR and ACP + PR discussed in Chapter 2.

Definition 3.2.5. A recursive equation over pBPA +PR is an equation of the form X = s(X) where
s(X) is a term over pBPA + PR containing variable X , but no other variables.

A recursive specification E over pBPA + PR is a set of recursive equations over pBPA + PR.
By this we mean that we have a set of variables V and an equation of the form X = sX(V) for each
X ∈ V , where sX(V) is a term over pBPA + PR containing variables from the set V .
V contains one distinguished variable called the root variable. Usually, for the equation of X we

write X = sX in short.

Chapter 3. Probabilistic Process Algebra 39

Definition 3.2.6. A solution of a recursive equation X = s(X) in some model of pBPA + PR s a
process p that satisfies the equation, that is p = s(p) holds in the model. A process p is a solution of a
recursive specification E in some model of pBPA + PR if after substituting p for the root variable of
E, there exist other processes for the other variables of E such that all equations of E are satisfied. If
E is a recursive specification with root variableX , then 〈X|E〉 denotes a solution of this specification.

Definition 3.2.7. A variable Y occurs unguarded in the term t in the following cases:

1. Y occurs unguarded in the term Y ;

2. if Y occurs unguarded in s, then for any term r, Y occurs unguarded in s ·r, Πn(s), s+r, r+s,
s tπr and r tπs as well.

Let UV(t) denote the set of all variables that occur unguarded in t.

Definition 3.2.8. The set of guarded terms GT over pBPA + PR is inductively defined in the
following way:

1. A ⊆ GT;

2. if g is a guarded term, then for any term t, g · t ∈ GT;

3. if g is a guarded term, then Πn(g) ∈ GT for n ≥ 1;

4. if g and h are guarded terms, then g + h ∈ GT.

5. if g and h are guarded terms, then g tπh ∈ GT.

Note that all closed terms are guarded. Moreover, it is easy to check that term g is guarded iff no
variable occurs unguarded in g. Obviously we could have taken this as a definition of guarded terms.
The reason not to do so lies in our intention to have an inductive definition of guarded terms. With
the constructive definition of guarded terms, as basically Definition 3.2.8 is, many proofs concerning
guarded terms can be carried out by means of induction. On the other hand, the notion of an unguarded
occurrence of a variable is used in the definition of guarded recursive specification. In fact, the right-
hand sides of the equations of a recursive specification E are not restricted to guarded terms; some
of them may contain unguarded variables. But they have to be structured in such a way that every
term that appears as a right-hand side of an equation of E can be transformed (rewritten) into a
guarded term only by replacing every variable by the associated term according to the equations of
E. Formally,

Definition 3.2.9. Let E be a recursive specification over variables V .

1. We write X u→ Y (for X, Y ∈ V) if Y occurs unguarded in the equation of X in E.

2. If the relation u→ is well-founded, E is called a guarded recursive specification.

3. If E does not contain unguarded occurrences of variables, E is called completely guarded.

40 3.2. Basic Process Algebra

Recall that a relation is well-founded if it does not have infinite sequences. In this case, this means
sequences of the form X1

u→ X2
u→ X3

u→ This implies absence of cycles. By
u
� we denote the

transitive closure of u→. Definition 3.2.9 clearly indicates that every guarded recursive specification
contains at least one equation whose right-hand side is a guarded term.

In the literature very often the definitions of “unguarded occurrences”, “guarded term”, “guarded
recursive specification” differ from the definitions we use. Below we formulate those definitions for
pBPA + PR, but we claim that they are equivalent with our corresponding definitions.

Definition 3.2.10.

1. Let s be a term over pBPA + PR containing variable X . We call an occurrence of X in s
guarded if s has a subterm of the form a · t, where a is an atomic action and t a term containing
this occurrence of X; otherwise we call the occurrence of X in s unguarded.

2. We call a term s completely guarded if all occurrences of all variables in s are guarded.

3. A recursive specification E is completely guarded if all right hand sides of all equations of E
are completely guarded terms.

4. A term s is guarded if we can rewrite s to a completely guarded term by use of the axioms.

5. A recursive specificationE is guarded if we can rewriteE to a completely guarded specification
by use of the axioms and by (repeatedly) replacing variables by the right-hand side of their
equations.

Note that in this definition of guarded recursive specification the axioms of the used process alge-
bra may be applied in the procedure of rewriting specification E into a completely guarded specifica-
tion. The difficulties in the probabilistic case with this definition occur in the proof of the claim that
the probability distribution function, whose formal definition is given in Section 3.3, is well defined
(Proposition 3.3.18). In fact, without having proved that the left-hand side and the right-hand side of
each axiom have the same probability distribution over bisimulation equivalence classes (which proof
comes later as a part of the soundness theorem of pBPA + PR) we cannot employ such a property to
show the probability distribution function being well-defined.

The following lemmas can easily be proven. The first lemma expresses that if a variable X
is substituted by a guarded term then the result term has less or equal unguarded occurrences of
variables, and none of them is X . The second lemma is a generalized variant of the former one.

Lemma 3.2.11. If g is a guarded term and h is a term with UV(h) = {X, Y1, Y2, . . . , Yn}, then the
term h(X := g) obtained by replacing all occurrences ofX by g has UV(h(X := g)) ⊆ UV(h)\{X}.

�

Lemma 3.2.12. If h is a term with UV(h) = {Y1, Y2, . . . , Yn} and g1, g2, . . . , gn are guarded terms,
then h(Y1 := g1, Y2 := g2, . . . , Yn := gn) is a guarded term. �

Lemma 3.2.13. Every guarded recursive specification can be rewritten into a completely guarded
recursive specification by repeatedly replacing unguarded occurrences of variables by the right-hand
sides of the corresponding equations.

Chapter 3. Probabilistic Process Algebra 41

Proof. Let E be a guarded recursive specification with the root variable X . Furthermore, let us
assume that {Y1, Y2, . . . , Yn} are all variables in V such that X

u
� Yi. It is clear that this is a finite

set, possibly empty. In the case this is the empty set, E does not contain unguarded variables and
therefore E is completely guarded. Otherwise, we can represent the relation u→ as a tree with the root
X (see for instance the tree in Figure 3.3 on page 57). Then, there must be at least one i for which
Yi 6 u→, namely Yi is not u→ related with any variable. In other words, tYi

does not have unguarded
variables, and so tYi

is a guarded term.
Let {Ym1, Ym2, . . . , Ymn} be the set of all variables with guarded right-hand sides whose existence

follows from above (all leaves in the tree). Then, there is at least one Y /∈ {Ym1, Ym2, . . . , Ymn} (a leaf
but one) such that UV(tY) ⊆ {Ym1, Ym2, . . . , Ymn}. From Lemma 3.2.12 follows that tY (Ymi := tYmi

)
becomes a guarded term. In that way, going backwards and in each step obtaining new guarded terms
and replacing them in the right-hand sides of the remaining equations in E, due to finiteness of the
tree (induced by the assumption of u→ being well-defined), this procedure terminates. The procedure
results in a completely guarded recursive specification. �

Recursion principles One reason that unguarded recursive specifications are not taken into account
is that they may have more than one solution. The next question that pops up immediately is: “Does
every guarded recursive specification has a unique solution?”. The answer of this question is “yes”
and the proof of it, for the bisimulation model of pBPA + PR will be given in Section 3.3.22. This
property is exactly expressed by a combination of two principles: RDP− and RSP. RDP− can easily
be made valid in the model simply by extending the set of processes with all possible solutions of
guarded recursive specifications. Therefore, the main point is to prove RSP. Basically, the relation
between an infinite process and its finite projections is established by the so-called AIP − principle:
it expresses that two infinite processes can be considered equivalent if all their finite projections with
the same degree are equivalent. In [27], the authors show that in an arbitrary model in which the
Projection theorem holds (see pg. 72), AIP− implies RSP. This is exactly the way we take in Section
3.3.2 where the recursion principles are discussed in a probabilistic setting.

In order to formulate the recursion principles the notion of boundedly branching (in [27] bounded
non-determinism) needs to be defined. Informally, in a given model a process p is boundedly branch-
ing if for any finite sequence of atomic actions s ≡ a1a2 . . . an(n ≥ 1), by executing the sequence s, p
can reach only finitely many different processes. (The formal definition can be found in [27] which is
easily extended with the probabilistic choice operator.) Thus, we deal with the following principles:

The Restricted Recursion Definition Principle (RDP−) Every guarded recursive specification has
a solution.

The Restricted Approximation Induction Principle (AIP−) A boundedly branching process is de-
termined by its finite projections, that is, for any x and y

(∀n ≥ 1 : Πn(x) = Πn(y) ∧ x is boundedly branching)⇒ x = y.

The Recursion Specification Principle (RSP) Every guarded recursive specification has at most
one solution.

2The proof of this property for non-probabilistic algebras BPA + PR and ACP + PR with recursion can be found in
[27].

42 3.2. Basic Process Algebra

3.2.5 Properties of pBPA and pBPA + PR

The main aim of the study of pBPA is to build a complete model for the axiomatization based on a
bisimulation equivalence. In fact, these results will be presented in Section 3.3.3 in the form of two
theorems: the Soundness theorem and the Completeness theorem. Orthogonal to this is the study of
pBPA + PR and a model of it that satisfies the recursion principles defined above. This will be the
subject of Section 3.3.2. But before we come to these points we present several interesting properties
of pBPA and pBPA + PR some of which are needed later on. A part of this section is devoted to the
introduction of the set of basic terms followed by a proof of the elimination property. The Elimination
theorem has a crucial role in the proof of the Completeness theorem.

Recall that in the non-probabilistic process algebra BPA one of the important notions used in the
proof of the completeness property is the notion of summand of a term. It says that if p = q + p
then q is a summand of p. Besides, it provides a partial ordering on the set of BPA terms. On the
contrary, the notion of a summand for the probabilistic choice operator cannot be defined (by simply
replacing “+” by “ tπ”) as the following proposition states. In fact, if equation p = q tπp can be
derived in pBPA it actually means that p and q represent the same processes. However, our axioms
do not reason in terms of infinite sums and we cannot derive the equation p = q in pBPA. On the
other hand, this property will be proved valid in the bisimulation model (Lemma 3.3.54 on pg. 80)
in a form of a cancellation law for the probabilistic choice operator and it will be one of the crucial
results used in the proof of the completeness property of pBPA. From this property we can make
one more observation. In [18], the authors propose a method for the verification of systems which is
based on a partial ordering of terms. They introduce the so-called realization axiom x ≤ x ty, which
says that x has less static non-determinism than x ty. This proposition shows that this approach
cannot be followed in the framework of pBPA because such a partial ordering cannot be defined in
a non-trivial way if probabilities are involved. It is worth to notice that in [3] the authors consider a
probabilistic axiomatization where one of the proposed axioms resembles Proposition 3.2.14. They,
indeed, consider an axiom which, translated into our syntax, has the form p = q tπp⇒ p = q.

Proposition 3.2.14. If pBPA ` p = q tπp for π ∈ 〈0, 1〉, then pBPA ` p ≈ q, where p ≈ q denotes
that p is equal to q with probability 1.

Proof. In pBPA the following equations are derivable:
p = q tπp = q tπ(q tπp) = (q t π

π(2−π)
q) tπ(2−π)p = q tπ(2−π)(q tπ(2−π)p) = q tπ1(2−π1)p,

where π1 = π(2− π). After n repetitions of this procedure we obtain pBPA ` p = q tπn+1p, where
πn+1 = πn(2− πn). The solution of this recurrent equation is πn = 1− (1− π)2n and as 1− π < 1,
lim

n→∞
1− (1− π)2n

= 1. �

The next proposition expresses that the term obtained by the interchange of two summands xi

and xj in the term x1 tπ1x2 tπ2 . . . tπi−1
xi tπi

. . . xj tπj
xj+1 . . . tπn−1xn together with assigned

probabilities is equal to the original term; it is easy to derive the equality using axioms PrAC1
and PrAC2. For example for n = 3, pBPA(+PR) ` x1 tπ1x2 tπ2x3 = x2 tπ2x1 tπ1x3 =
x1 tπ1x3 t1−π1−π2x2. Furthermore, for n = 2 we simply have axiom PrAC1. We will use this
proposition very often without indicating it explicitly.

Proposition 3.2.15. It can be easily proved that the following equations hold in pBPA(+PR):

i. x1 tπ1x2 tπ2 . . . tπi−1
xi tπi

. . . xj tπj
xj+1 . . . tπn−1xn

= x1 tπ1x2 tπ2 . . . tπi−1
xj tπj

. . . xi tπi
xj+1 . . . tπn−1xn,

for each i, j, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, i < j and n ≥ 3;

Chapter 3. Probabilistic Process Algebra 43

ii. x1 tπ1x2 tπ2 . . . tπi−1
xi tπi

xi+1 . . . tπn−1xn

= x1 tπ1x2 tπ2 . . . tπi−1
xn t1−

� n−1
j=1 πj

xi+1 . . . tπn−1xi,
for each 1 ≤ i ≤ n− 1 and n ≥ 2. �

Next we define a special subset, denoted D(pBPA), of the set of closed terms of pBPA. All
constants belong to this set. Besides, elements of this set are all closed pBPA terms with the outermost
operator either sequential composition or alternative composition. Moreover, they cannot be rewritten
by means of the pBPA axioms into terms with probabilistic choice as the outermost operator. Formally,

Definition 3.2.16. By SP(pBPA) we will denote the set of all closed terms over the signature ΣpBPA.
An auxiliary set of closed terms, D(pBPA), is defined as follows:

1. Aδ ⊆ D(pBPA);

2. s ∈ D(pBPA), t ∈ SP(pBPA)⇒ s · t ∈ D(pBPA);

3. t, s ∈ D(pBPA)⇒ t + s ∈ D(pBPA).

As elaborated in Section 3.3, terms in D(pBPA) represent processes with a trivial probability
distribution - only one process is assigned the non-zero probability 1. From the structure of the terms
inD(pBPA) this interpretation comes naturally. Additionally, since the closed terms of BPA and BPAδ

can be seen as probabilistic terms that do not contain any probabilistic choice operator, the embedding
of these two non-probabilistic process algebra into pBPA is done by mapping closed terms from BPA
or BPAδ into the set D(pBPA).

Proposition 3.2.17. pBPA ` s = s+ s, for s ∈ D(pBPA)

Proof. The proof is given by induction on the structure of s.

Case s ≡ a, a ∈ Aδ. The result follows from axiom AA3;

Case s ≡ s′ · t. By the inductive hypothesis pBPA ` s′ = s′ + s′ and pBPA ` s+ s = s′ · t+ s′ · t =
(s′ + s′) · t = s′ · t = s;

Case s ≡ s′ + s′′. By the inductive hypothesis pBPA ` s′ = s′ +s′ and pBPA ` s′′ = s′′ +s′′. Hence,
pBPA ` s+ s = (s′ + s′′) + (s′ + s′′) = (s′ + s′) + (s′′ + s′′) = s′ + s′′ = s.

�

In a similar way we define a setD(pBPA+PR) as a subset of the set of closed terms of pBPA+PR.
An adapted version of Proposition 3.2.17 is valid for D(pBPA + PR) terms as well.

Definition 3.2.18. By SP(pBPA + PR) we will denote the set of all closed terms over the signature
ΣpBPA+PR. An auxiliary set of closed terms, D(pBPA + PR), is defined as follows:

1. Aδ ⊆ D(pBPA + PR);

2. s ∈ D(pBPA), t ∈ SP(pBPA + PR)⇒ s · t ∈ D(pBPA + PR);

3. s ∈ D(pBPA + PR)⇒ Πn(s) ∈ D(pBPA + PR), for n ≥ 1;

4. t, s ∈ D(pBPA + PR)⇒ t+ s ∈ D(pBPA + PR).

44 3.2. Basic Process Algebra

Basic terms An interesting property that is derived from the axioms of pBPA is that every term can
be expressed in a normal form. The next step is to define a set of terms that are in normal form, which
we call basic terms, and to prove that every terms is provably equal to a basic term. Because of the
Elimination theorem, if some statement must be proved to be valid for all closed terms, it is sufficient
to prove it valid for all basic terms, using structural induction as a proof method. This makes the core
of the proof of the Completeness theorem.

Definition 3.2.19. The set of basic terms of pBPA, B(pBPA), is inductively defined with the help of
an intermediate set B+(pBPA).

1. A ∪ {δ} ⊆ B+(pBPA) ⊂ B(pBPA);

2. a ∈ A, t ∈ B(pBPA)⇒ a · t ∈ B+(pBPA);

3. t, s ∈ B+(pBPA)⇒ t+ s ∈ B+(pBPA);

4. t, s ∈ B(pBPA)⇒ t tπs ∈ B(pBPA) for every π ∈ 〈0, 1〉.

Remark 3.2.20. If terms that only differ in the order of the summands are considered to be identical
(i.e. identification of terms is considered modulo axioms A1, A2, PrAC1 and PrAC2), then the
basic terms are exactly the terms of the form

x ≡ x1 (x ∈ B+(pBPA)) or (3.1)

x ≡ x1 tπ1x2 tπ2x3 . . . xn−1 tπn−1xn and n > 1 (3.2)

where xi ≡
∑

j<li

aij · tij +
∑

k<mi

bik for certain aij, bik ∈ Aδ, basic pBPA terms tij and n,mi, li ∈ IN .

The terms in D(pBPA) are exactly of the form:
∑

i<m

si · ti +
∑

j<n

aj for some n,m ∈ IN , ai ∈ Aδ,

D(pBPA) terms si and SP(pBPA) terms ti. And B+(pBPA) ⊂ D(pBPA).

Elimination property of pBPA and pBPA + PR The proof of the Elimination theorem to basic
terms in pBPA consists of two parts (as described in Section 2.3). In the first part we construct a TRS
from the axioms of pBPA (with the rules given in Table 3.5) and show that it is a strongly normalizing
TRS. In the second part we show that every normal form of the previously defined TRS is indeed a
basic term of pBPA.

Lemma 3.2.21. The term rewrite system shown in Table 3.5 (π ∈ 〈0, 1〉) is strongly normalizing.

Proof. In order to prove this claim we use the method of the lexicographical variant of the recursive
path ordering. Suppose that the following ordering on the signature of pBPA is defined: · > + > tπ

and the symbol · is given the lexicographical status for the first argument. Then for each rewrite rule
p → q in Table 3.5 relation p >lpo q can easily be proved. From Theorem 2.3.4 it follows that the
given term rewrite system is strongly normalizing. �

Lemma 3.2.22. The normal forms of closed pBPA terms are basic pBPA terms.

Chapter 3. Probabilistic Process Algebra 45

(x+ y) · z → x · z + y · z RA4
(x · y) · z → x · (y · z) RA5
δ · x → δ RA7
(x tπy) · z → x · z tπy · z RPAC4
(x tπy) + z → (x+ z) tπ(y + z) RPAC5
x+ (y tπz) → (x+ y) tπ(x+ z) RPAC5′

Table 3.5: Term rewrite system of pBPA.

Proof. Suppose that p is a normal form of some closed pBPA term and suppose that p is not a basic
term. Let p′ denote the smallest sub-term of p which is not a basic term. It implies that each sub-term
of p′ is a basic term. Then p can be proved not to be a term in normal form. The possible forms of p′

give the following cases:

Case p′ ≡ a, a ∈ Aδ. p′ is a basic term, which contradicts the assumption that p′ is not a basic term.
So this case does not occur.

Case p′ ≡ p1 · p2. By case analysis on the structure of the basic term p1 we have:

Subcase p1 ∈ Aδ. In this case p′ would be a basic term, which contradicts the assumption that
p′ is not a basic term;

Subcase p1 ≡ a · p′1. RA5 rewriting rule can be applied. So, p is not a normal form;

Subcase p1 ≡ p′1 + p′′1. RA4 rewriting rule can be applied. So, p is not a normal form;

Subcase p1 ≡ p′1 tπp
′′
1 . RPAC4 rewriting rule can be applied. So, p is not a normal form.

Case p′ ≡ p1 + p2. By case analysis on the structure of both terms p1 and p2 we obtain:

Subcase both p1 and p2 are from B+(pBPA). p′ would be a basic term, which contradicts the
assumption that p′ is not a basic term;

Subcase p1 ≡ p′1 tπp
′′
1 or p2 ≡ p′2 tσp

′′
2. One of rewriting rules RPAC5 or RPAC5′ is appli-

cable. So p is not a normal form.

Case p′ ≡ p1 tπp2. In this case p′ would be a basic term (since p1 and p2 are basic terms) which
contradicts with the assumption that p′ is not a basic term.

�

As a corollary of the previous two lemmas the Elimination theorem follows:

Theorem 3.2.23 (Elimination theorem of pBPA). Let p be a closed pBPA term. Then there is a basic
pBPA term q such that pBPA ` p = q. �

One can notice that if s is a closedD(pBPA) term, then the associated basic term whose existence
is guaranteed by the Elimination theorem is a basic term from B+(pBPA).

Using the Elimination theorem of pBPA we can prove the elimination property of pBPA + PR.
Basically, it is sufficient to prove that the projection operator can be eliminated from closed pBPA +
PR terms in favour of basic operators of pBPA. Then the elimination property of pBPA+PR follows
straightforwardly.

46 3.3. Operational semantics

Lemma 3.2.24. (Elimination of the projection operator) If s is a basic pBPA term and n ∈ N, n ≥ 1,
then there exists a closed pBPA term t such that pBPA + PR ` Πn(s) = t.

Proof. The proof is given by the double induction on n and the structure of s.

Basis. For n = 1 we have the following:

Case s ≡ a, a ∈ Aδ. The conclusion follows from axiom PR1;

Case s ≡ a · s1. pBPA + PR ` Π1(s) = a and a is a closed pBPA term;

Case s ≡ s12s2 with 2 ∈ {+, tρ}. pBPA+PR ` Π1(s) = Π1(s1)2Π1(s2). From the induc-
tive hypothesis there are closed pBPA terms t1 and t2 such that pBPA+PR ` Π1(s1) = t1
and pBPA + PR ` Π1(s2) = t2. Hence, pBPA + PR ` Π1(s) = t12t2 and t12t2 is a
closed pBPA term.

Inductive step. For n > 1 we have the following:

Case s ≡ a ∈ Aδ. The conclusion follows from axiom PR1;

Case s ≡ a · s1. pBPA + PR ` Πn(s) = a · Πn−1(s1). By the inductive hypothesis there
exists a closed pBPA term t1 such that pBPA + PR ` Πn−1(s1) = t1. Thus, we obtain:
pBPA + PR ` Πn(s) = a · t1 and a · t1 is a closed pBPA term;

Case s ≡ s12s2 with 2 ∈ {+, tρ}. pBPA+PR ` Πn(s) = Πn(s1)2Πn(s2). From the induc-
tive hypothesis there are closed pBPA terms t1 and t2 such that pBPA+PR ` Πn(s1) = t1
and pBPA+PR ` Πn(s2) = t2. Thus, we obtain pBPA+PR ` Πn(s) = t12t2 and t12t2
is a closed pBPA term.

�

Theorem 3.2.25 (Elimination theorem of pBPA + PR). Let s be a closed term over the signature of
pBPA + PR. Then there exists a closed pBPA term t such that pBPA + PR ` s = t. �

3.3 Structured operational semantics of pBPA and
pBPA + PR

3.3.1 Introduction
For any concrete process algebra defined in the present thesis we will define a term-deduction sys-
tem which gives the operational semantics of that theory. Then, using the concept of bisimulation
equivalence (an equivalence relation that relates two processes if and only if they exhibit the same
behaviour) we obtain a bisimulation model of the given process algebra (of the given axiomatization).
The construction of the bisimulation models proposed in Chapter 3, 4 and 5 is based on the same
concept and method. In all cases there is a pattern followed consisting of a few phases, even though,
each model has its own characteristics that will be described in relevant sections. We start this sec-
tion by giving a general framework of the main steps. We describe the main ingredients taken into
account before a model of one process algebra is fixed. In the second part we give several definition
schemas used in the sequel. For a particular process algebra these schemas will be used to come up
with precise definitions.

Chapter 3. Probabilistic Process Algebra 47

Transitions A term-deduction system TPRA that brings us towards a model of an untimed process
algebra PRA is based on the alternating model of Hansson [71]. It contains two types of transitions,
probabilistic transition(s) ;, and action transitions labelled by an atomic action a, a→ and a→ √. For
both types of transitions a set of SOS rules (in Plotkin style) are given. The term-deduction system for
the operational semantics of the probabilistic process algebra with discrete time introduced in Chapter
5 will have three types of transitions including these two.

An action transition x a→ p has the standard meaning; by performing action a process x evolves
into p. x a→√ denotes that x performs an a action and then terminates.

p ; x denotes that process p with a non-zero probability, π(> 0), chooses to behave like x. Due
to uncertain internal behaviour, the process makes a probabilistic transition reaching a process which
may continue by executing an atomic action. Note that ; is an unlabelled transition. The value
of the probability π is determined by an additional function introduced later (pg. 51). To motivate
why we split probabilistic transitions from the labels denoting probabilities, consider the following
example. Let p ≡ a t1/2a. If labelled probabilistic transitions are used intuitively, (without formal
semantics yet) due to the first subprocess a, p does a probabilistic transition to a process x labelled
with probability 1/2, and x is such that x a→ √. Also, p can perform another probabilistic transition
to the process x because of the second subprocess a which is labelled with probability 1/2 as well.
Thus, intuitively we expect that p behaves like x with total probability 1 (also expressed in axiom
PrAC3). But written in terms of transition relations (presented as sets, but not as multisets), it turns
out to be that p does a probabilistic transition to x with probability 1/2. To avoid this situation we
use unlabelled probabilistic transitions and calculate the probability assigned to one transition with
the probability distribution function µ (to be introduced below).

Another way to avoid this ambiguity is to add an index to each transition. The index indicates the
subprocess the transition of p is derived from (see [81, 56]). In other words, they help to distinguish
different occurrences of the same probabilistic transition. For the process p ≡ a t1/2a, one transition
to x will be marked by l denoting the left sub-term and the other one will be marked by r denoting
the right sub-term. We find this approach technically difficult since the number of indices increases
by each new transition. Yet another possibility is to consider a transition x → α where α is an
appropriate (discrete) probability distribution.

The interplay of the probabilistic and non-deterministic choice integrated in the process algebras
from the previous sections (see Remark 3.2.2) has to be implemented in the model as well. For that
purpose, every action transition is preceded by an probabilistic transition. It expresses exactly that
the process exhibits some internal random behaviour before it performs any action. Moreover, in the
model every process starts by executing a probabilistic transition. As shown later, for some processes
it will be a trivial probabilistic transition (a probabilistic transition which is assigned probability 1).
In a model of a fully probabilistic process algebra probabilistic and action transitions can be joined
into one transition.

We use the following abbreviation: p 6; x if ¬(p ; x) for some p and x; p 6 a→ x if ¬(p
a→ x) for

some p and x; p 6 a→ if ∀x : p 6 a→ x; p ; M if ∃x ∈M : p ; x.

Domain of model Let us summarize what has been said above. There are two types of transitions,
probabilistic and action. Therefore, any process (different from the deadlock process) makes either
a probabilistic or an action transition(s). In the alternating model, probabilistic transitions alternate
with action transitions. Namely, one process makes a probabilistic transition and it reaches a process
that makes an action transition or it may deadlock. Otherwise, a process makes an action transition
and it terminates or it reaches a process that performs a probabilistic transition. This approach entails

48 3.3. Operational semantics

that two types of processes should be distinguished; processes that make probabilistic transitions, will
be called static processes, and processes that make action transitions or deadlock, called dynamic pro-
cesses. It turns out that the set of static processes, SP

(∞)(PRA), will be containing the interpretations
of the terms (including guarded terms if recursion is considered) in our PRA. The set of dynamic pro-
cesses, denoted DP

(∞)(PRA), should contain all processes that do not make probabilistic transitions
but may perform an action transition. For instance, a tπb should not be considered as a DP

(∞)(PRA)
process. It contains a probabilistic choice that ought to be resolved. Thus, this process can make a
probabilistic transition to a process x which does x a→√ and it can make a probabilistic transition to
a process y which does y b→√. (Therefore, x (y) should be defined equivalent to any process that can
do a→ √ (

b→ √) and nothing else, but not to a (b).) And since x and y make only action transitions
they should be classified as DP

(∞)(PRA) processes.
To define DP

(∞)(PRA) processes, one can think of the following solutions. First, simply
SP

(∞)(PRA) is split into two subsets. For instance if we treat pBPA without recursion, then the
set of dynamic processes DP(pBPA) may be defined to coincide with the set D(pBPA). Then, the
other subset, SP

∞(PRA) \ DP
∞(PRA), defines the set of static processes. Thus, for the process

above we will have that a tπb ; a
a→ √ and a tπb ; b

b→ √. Hence, it becomes obvious that the
rule a a→ √, a ∈ A has to be included in the semantics. Now the question arises: do we need rule
a ; a for a ∈ Aδ as well? If the rule a ; a is not included, then the structure of the deduction rules
becomes misleading. To illustrate it, take the process (a tπb) + c. It is expected that the following
transitions occur: (a tπb) + c ; a+ c and (a tπb) + c ; b+ c. Hence, a rule in the following form

has to be part of the semantics:
x ; u, y

a→√

x+ y ; u+ y
. In our opinion this rule is not very intuitive since it

“looks” ahead at action transitions of y which do not play a role in the first step of x + y.
If we do have the rule a ; a, then a possibility of an infinite sequence of transitions for a finite

process arises, for instance, a ; a ; a
In [71] (see also [70]) a distinction between probabilistic and non-deterministic expressions is

made already in the definition of the theory. This can be done there because the set of expressions is
restricted in comparison to our set of terms. For instance, it does not allow expressions like (a tπb)+
(c tρd).

For the reasons mentioned above we choose another approach. Actually, we introduce an auxiliary
notation for dynamic processes. These processes are involved only in the definition of the deduction
rules (operational semantics), and they will not be considered as interpretations of terms in PRA.

To give a flavour, first in the set SP
∞(PRA) we distinguish processes that perform only one trivial

probabilistic transition (the set D∞(PRA)) (e.g. a + a but not a t1/2a) from processes with non-
trivial probabilistic transitions. Then, for each process p which performs only a trivial probabilistic
transition (e.g. a + a) we introduce a counterpart p̆ which represents a dynamic process (e.g. ă + ă).
And we assume that with probability 1, p does a probabilistic transition to p̆. In other words, for every
p from D∞(PRA) there is a p̆ in DP

∞(PRA) such that p ; p̆ with probability 1.
In order to realize this idea an enlarged signature of TPRA is required. In return we obtain simpler

and more intuitive deduction rules. The new signature, denoted Σ̆PRA, is the signature of PRA
extended only by a set of new constants Ăδ = {ă : a ∈ Aδ}. Let us note that Aδ ⊆ SP

(∞)(PRA) and
Ăδ ⊆ DP

(∞)(PRA) for any presented process algebra.
Back to the example above, the transitions of the process (a tπb) + c become: (a tπb) + c ;

ă+ c̆
a→√, (a tπb) + c ; ă+ c̆

c→√, (a tπb) + c ; b̆ + c̆
b→√ and (a tπb) + c ; b̆ + c̆

c→√.
Next, we give general frameworks of definitions of the just described sets. As any considered

model will be an extension of the model of pBPA, the operators of pBPA are explicitly integrated

Chapter 3. Probabilistic Process Algebra 49

in these schemas. First we give the definition of the total domain that is generated by the signature
Σ̆PRA. Then, we omit the processes not of any importance and produce the real domain that we use
further on.

Definition 3.3.1. For signature Σ̆PRA which contains Aδ ∪ Ăδ and the operators: +, ·, Πn and tπ

(n ≥ 1, π ∈ 〈0, 1〉) we define a set TotalDomain(∞)(PRA) as the smallest set for which:

1. Aδ ⊆ TotalDomain(∞)(PRA), Ăδ ⊆ TotalDomain(∞)(PRA);

2∗. < X|E >∈ TotalDomain(∞)(PRA) where < X|E > is a constant introduced for a solution
of the guarded recursive specification E in PRA with root variable X;3

3. TotalDomain(∞)(PRA) is closed under all operators in Σ̆PRA.

The TotalDomain(∞)(PRA) is a very large set with respect to the set of processes defined
by terms over PRA and recursion. Therefore, we are interested only in those processes from
TotalDomain(PRA)(∞) that can be reached, by the means of transitions, from the interpretation
of a term in PRA (e.g. ă · ă is not such a process).

Definition 3.3.2. For a given process algebra PRA whose signature contains the +, ·, Πn (n ≥ 1)
and tπ (π ∈ 〈0, 1〉) operators, the set of static processes SP

(∞)(PRA) is inductively defined in the
following way:

1. Aδ ⊆ SP
(∞)(PRA);

2∗. < X|E >∈ SP
∞(PRA); (see footnote 3)

3. if p, q ∈ SP
(∞)(PRA), then p · q ∈ SP

(∞)(PRA);

4. if p, q ∈ SP
(∞)(PRA), then p+ q ∈ SP

(∞)(PRA);

5. if p, q ∈ SP
(∞)(PRA), then p tπq ∈ SP

(∞)(PRA);

6. if p ∈ SP
(∞)(PRA), then Πn(p) ∈ SP

(∞)(PRA), n ≥ 1;

7. new items can be added for the other operators of PRA.

Definition 3.3.3. A special subset of SP
(∞)(PRA), the set of trivial static processes D(∞)(PRA), is

inductively defined as:

1. Aδ ⊆ D(∞)(PRA);

2. if s ∈ D(∞)(PRA) and t ∈ SP
(∞)(PRA) then s · t ∈ D(∞)(PRA);

3. if s, t ∈ D(∞)(PRA) then s+ t ∈ D(∞)(PRA);

4. if s ∈ D(∞)(PRA) then Πn(s) ∈ D(∞)(PRA), n ≥ 1;

5. this definition can be extended with additional statements for the other operators of PRA other
than tπ .

3These elements are added only for models with infinite processes.

50 3.3. Operational semantics

√ √

flip · (head πtail)

˘tail˘head

head tail

head πtail

˘flip · (head πtail)

flip

Figure 3.1: Operational semantics of the process s.

A set of dynamic processes DP
(∞)(PRA) is defined on basis of D(∞)(PRA) in the following way:

Definition 3.3.4. Let ϕ : D(∞)(PRA)→ TotalDomain(∞)(PRA) be defined in the following way:

1. ϕ(a) = ă for each a ∈ Aδ;

2. ϕ(s · t) = ϕ(s) · t;

3. ϕ(s+ t) = ϕ(s) + ϕ(t);

4. ϕ(Πn(s)) = Πn(ϕ(s)), n ≥ 1;

5. depending on the fifth item in the definition of D(∞)(PRA), additional equalities for ϕ may be
stated.

DP
(∞)(PRA) = ϕ(D(∞)(PRA)). Shortly, ϕ(s) will be denoted by s̆.

Thus, the domain PT
(∞)(PRA) of the model of PRA is the set of all static and dynamic processes,

that is, PT
(∞)(PRA) = SP

(∞)(PRA) ∪ DP
(∞)(PRA).

Example 3.3.5. The operational semantics of the process s ≡ flip · (head tπtail) (pg. 35) has the
transitions shown in Figure 3.1. �

Finally, we give the notion of a guarded process that becomes important in models with infinite
processes. It is clear that they present interpretations of the guarded terms of PRA.

Definition 3.3.6. If g is a (guarded) term in PRA and E is a guarded recursive specification such that
V(g) ⊆ V(E) then the (guarded) process < g|E > in the bisimulation model of PRA is obtained
from the interpretation of g when every variable Y in g is replaced by < Y |E >.

Remark 3.3.7. Instead writing all over again: “...g is a (guarded) term and E is a guarded recursive
specification such that V(g) ⊆ V(E), then < g|E > is a (guarded) process ...” we say in short that
“...< g|E > is a (guarded) process ...”. And it is clear that if g is a guarded term, then the inductive
structure of g may be engaged in any inductive proof of a property of < g|E >. Also it is clear that
< g|E > does not contain any variable, that is< g|E >∈ SP

∞(PRA), since all variables are replaced
by constants according to the specification E. In fact, the interpretation < g|E > of the (guarded)
term g does depend completely on E; it gives the context into which g is considered. However, many

Chapter 3. Probabilistic Process Algebra 51

properties of the guarded process < g|E > (as we see later) do not depend on the values assigned
to the variables of g, but rather on the structure of guarded processes. In that case we do not need to
relate g to one particular E, but we need to focus only on the structure on g. And, if the proof of one
property is based on the structure on g, then it is valid for any < g|E > for any possible E. Then
we talk about “guarded process g” only as interpretation of “guarded term g” (we do not introduce
a new notation for it). And, once again, the inductive definition of guarded terms (Definition 3.2.8)
induces the same structure on guarded processes. To justify this, let us consider the guarded term
g ≡ a · X t1/2b · Y where X and Y are variables. It is clear that g is a guarded term in pBPA.
E1 = {X = c+ d ·Y, Y = b ·X} is a guarded recursive specification in pBPA. Then < g|E1 > is the
guarded process a· < X|E1 > t1/2b· < Y |E1 > where < X|E1 >,< Y |E1 > is a solution of E1

in the considered model of pBPA. But if we consider guarded term g in another context, for example,
in the context of another guarded recursive specification E2 = {X = c · Y, Y = d · X}, then we
obtain another guarded process < g|E2 >= a· < X|E2 > t1/2b· < Y |E2 > and it is obvious that
< g|E1 > and < g|E2 > are not equivalent.

Still there are some properties that do not depend on the interpretation of X and Y , but certainly
depend on the structure of g. For example, whatever guarded recursive specification E with X and Y
as variables is considered, we are certain that < g|E > can reach only two processes with a non-zero
probability.

Probability distribution function A probability distribution function (PDF) in the bisimulation
model of a given process algebra PRA is a map µ : PT

(∞)(PRA) × PT
(∞)(PRA) → [0, 1] defined

inductively on the structure of the processes. Namely, if p ≡ q ∗ r where ∗ is an operator in PRA,
the probability by which p behaves in a certain way depends on the probabilistic behaviour of its sub-
processes q and r. That is, µ(p,) = func(µ(q,), µ(r,)) for some real function func(,). This
function shows the effect the sub-processes have on the total probability4. In Table 3.6 and 3.7 we
give the equalities for the constants and the +, · and tπ operators. Additional equalities for the other
operators of PRA (if there are such) may be stated to complete the definition of the PDF.

µ(a, ă) = 1,

µ(δ, δ̆) = 1, if δ is in the signature

Table 3.6: Equalities that define PDF’s (part 1 - constants)

µ(x · y, x′ · y) = µ(x, x′),
µ(x + y, x′ + y′) = µ(x, x′) · µ(y, y′),
µ(x tπy, z) = πµ(x, z) + (1− π)µ(y, z),
µ(x, u) = 0 otherwise

Table 3.7: Equalities that defined PDF’s (part 2 - basic operators)

One can note that the probability by which process p behaves like process x depends at the first
place on the structure of p and x. The equalities in Table 3.6 say that the constants can make only

4In mathematical terminology, µ(p,) is the distribution function of a random variable derived from the random vari-
ables with distribution functions µ(q,) and µ(r,).

52 3.3. Operational semantics

a trivial probabilistic transition. The equality for the + operator is obtained as a probability of the
independent events: “p behaves like x” and “q behaves like y”. And the equality for tπ operator
is obtained as a total probability of the events “p behaves like x” and “q behaves like x” taking into
account the conditional probabilities by which p or q is chosen (π and 1− π resp.) (see [99]).

To define probabilistic bisimulation (a la Larsen-Skou [86]), we first need to define the cumulative
probability distribution function which extends the PDF over a set of processes. For a given process
p and a set of processes M it computes the total probability by which process p chooses to behaves
like any element in M . The formal definition follows.

Definition 3.3.8. The cumulative probability distribution function (cPDF) is a map
µ∗ : PT

(∞)(PRA)× P(PT
(∞)(PRA))→ [0, 1] defined as: µ∗(p,M) =

∑

x∈M

µ(p, x) for each p ∈
PT

(∞)(PRA) and M ⊆ PT
(∞)(PRA).

From now on µ∗ will be simply denoted as µ. And by “PDF” function we will mean a probability
distribution function whose definition is based on the schema in Table 3.6 and 3.7 and for which µ∗ is
well defined. Two important features of the PDF’s are stated in the following two propositions. The
first property follows directly from the definition of probability measure. The second one is crucial
for many proofs in the remainder of the thesis, in particular for the proof of the Soundness theorem.
Informally, if M is a equivalence class that corresponds to the left-hand side of an axiom, then M ′ is
the equivalence class corresponding to the right-hand side of the same axiom, and the bijection ′ maps
the left-hand side into the right-hand side. In that way the condition which is sufficient to be checked
according to the proposition - for each m ∈M whether µ(p,m) = µ(q,m′) - becomes trivial.

Proposition 3.3.9. Let Mi ⊆ PT
(∞)(PRA), i ∈ I for some finite or countably infinite index set I ,

such that Mi ∩Mj = ∅ for each i, j ∈ I, i 6= j. Then µ(p,
⋃

i∈I

Mi) =
∑

i∈I

µ(p,Mi). �

Proposition 3.3.10. Let ′ : M → M ′ be a bijection such that for each m ∈ M , µ(p,m) = µ(q,m′).
Then µ(p,M) = µ(q,M ′).

Proof. Since ′ : M →M ′ is a bijection such that µ(p,m) = µ(q,m′) for every m ∈M :
µ(p,M) =

∑

m∈M

µ(p,m) =
∑

m∈M

µ(q,m′) = µ(q,
⋃

m∈M

{m′}) = µ(q,M ′). �

Bisimulation After the term-deduction system TPRA is defined the model of the process algebra
PRA is obtained as a quotient set5 of SP

(∞)(PRA) by bisimulation equivalence. In Chapter 3, 4 and
5, the strong variant of probabilistic bisimulation is employed. In Chapter 6, where abstraction is
introduced, the definition of bisimulation relation essentially differs from the present one. We leave
that for later. Now, we give the definition of the strong probabilistic bisimulation relation [86] which
is used in the following three chapters. (Note: in the chapter of timed process algebra the definition
of the strong probabilistic bisimulation will be slightly modified.)

Definition 3.3.11. Let R be an equivalence relation on PT
(∞)(PRA). R is a probabilistic bisimula-

tion if:

1. if pRq and p ; s then there is a term t such that q ; t and sRt;

2. if sRt and s a→ p for some a ∈ A, then there is a term q such that t a→ q and pRq;
5The set of all equivalence classes.

Chapter 3. Probabilistic Process Algebra 53

3. if sRt and s a→√, then t a→ √;

4. if pRq, then µ(p,M) = µ(q,M) for each M ∈ PT
(∞)(PRA)/R.

If there is a probabilistic bisimulation R such that pRq, then p is probabilistically bisimilar to q,
denoted by p↔ q.

Different from a bisimulation relation used in the construction of the bisimulation models of
other ACP-like process algebras, here, a probabilistic bisimulation relation R is required to be an
equivalence relation. This requirement is related with the fourth clause in Definition 3.3.11 which says
that in addition to an existence of a bisimulation of probabilistic and action transitions between two
processes considered as bisimilar, the cumulative probabilities of both processes for theR equivalence
classes must be equal. For example, the processes presented by the transition systems a) and b) in
Figure 3.2 are not probabilistically bisimilar but the processes a) and c) are bisimilar6.

a) a 1/2 b c) a 1/4 (a + a) 1/4bb) a 1/3 b

1
2

b
aa

1
4

1
4

a

2
3

ba

1
3

b

1
2

1
2

a

Figure 3.2: An example of (not) bisimilar processes.

Let us assume that a PDF function µ is defined on PT
(∞)(PRA).

Proposition 3.3.12. If R1 and R2 are probabilistic bisimulation relations on PT
(∞)(PRA), then

R = Eq(R1 ◦R2) is a probabilistic bisimulation relation on PT
(∞)(PRA) as well7.

Proof. Suppose that (p, r) ∈ R for some p, r ∈ PT
(∞)(PRA). We need to prove that p and r can

mimic each other on every transition and on PDF as well (as given in the definition of probabilistic
bisimulation). From the definition ofR it follows that there exists q ∈ PT

(∞)(PRA) such that (p, q) ∈
R1 and (q, r) ∈ R2. (1)

Probabilistic transitions. If p ; u, then there exists v such that q ; v and uR1v. Then there exists
w such that r ; w and vR2w, and uRw.

Action transitions. Let p a→ s for some a ∈ A and s. Then there exists t such that q a→ t and sR1t
from which it follows that there exists o such that r a→ o and tR2o. Thus, sRo.

Action termination. If p a→ √ for some a ∈ A then q a→√ and also r a→√.

PDF. Let be M ∈ PT
(∞)(PRA)/R. Since R1 and R2 are subsets of R (all of them are equivalence

relations on PT
(∞)(PRA)) M =

⋃

i∈I1

Mi1 =
⋃

j∈I2

Mj2 for I1 6= ∅, I2 6= ∅ and for some equiv-

alence classes Mi1 ∈ PT
(∞)(PRA)/R1, i ∈ I1 and Mj2 ∈ PT

(∞)(PRA)/R2, j ∈ I2. From
Proposition 3.3.9 and (1) it follows that:

6The way processes are presented in this example is not very precise (it is informal), that is, it does not meet the formal
definition given later.

7Once again Eq(α) denotes the equivalence closure of relation α.

54 3.3. Operational semantics

µ(p,M) = µ(p,
⋃

i∈I1

Mi1) =
∑

i∈I1

µ(p,Mi1) =
∑

i∈I1

µ(q,Mi1) = µ(q,
⋃

i∈I1

Mi1) =

µ(q,M) = µ(q,
⋃

j∈I2

Mj2) =
∑

j∈I2

µ(q,Mj2) =
∑

j∈I2

µ(r,Mj2) = µ(r,
⋃

j∈I2

Mj2) = µ(r,M).

�

Proposition 3.3.13. ↔ is a probabilistic bisimulation relation on PT
(∞)(PRA).

Proof. The result that ↔ is a reflexive and symmetric relation is trivial and from Proposition 3.3.12
the transitivity of ↔ follows easily. Thus ↔ is an equivalence relation.

Now we need to prove that ↔ satisfies the four clauses of Definition 3.3.11. Suppose that p↔ q
for some p, q ∈ PT

(∞)(PRA). From the definition of ↔ it follows that there exists a bisimulation
relation R such that (p, q) ∈ R. The proofs that p and q simulate each other on probabilistic and
action transitions are trivial.

PDF. Suppose that M ∈ PT
(∞)(PRA)/↔ . Since R and ↔ are equivalence relations defined on

the same set and R ⊆ ↔ , then M =
⋃

i∈I

Mi for some Mi ∈ PT
(∞)(PRA)/R, i ∈ I, I 6= ∅.

Hence,

µ(p,M) = µ(p,
⋃

i∈I

Mi) =
∑

i∈I

µ(p,Mi) =
∑

i∈I

µ(q,Mi) = µ(q,
⋃

i∈I

Mi) = µ(q,M).

�

From Definition 3.3.11 and Proposition 3.3.13 it follows that ↔ is the maximal probabilistic
bisimulation relation on PT

(∞)(PRA).

Model Finally, after proving that ↔ is a congruence on PT
(∞)(PRA), the model of PRA has

the quotient set of SP
(∞)(PRA) by the equivalence relation ↔ as its domain, that is, M(∞)

PRA =
SP

(∞)(PRA)/↔ .

3.3.2 Model of pBPA + PR and properties of the model
Following the pattern described before, we construct the bisimulation model of pBPA + PR with
infinite processes and prove some of its properties. First, we define the bisimulation model with
infinite processes introduced as solutions of guarded recursion in pBPA + PR. Second, we reduce it
to the bisimulation model with only finite processes, for which we prove the completeness property.

(Note: Even though in the previous section we presented several process algebras, pBPA + PR
and pBPA which are extensions of pBPA−δ which is obtained from fpBPA, in this section we deal only
with pBPA + PR and pBPA. For the algebras left out, the semantics can easily be deduced.)

Let A<X|E> be the set of all constants < X|E > for X a process variable and E a guarded
recursive specification in pBPA + PR. The operational semantics of pBPA + PR is given by
the term-deduction system TpBPA+PR = (Σ̆pBPA+PR, DRpBPA+PR) with Σ̆pBPA+PR = (Aδ ∪ Ăδ ∪
A<X|E>,+, ·, tπ,Πn) and with the deduction rules shown in Table 3.8+3.9 and the rules for action
transitions given in Table 3.10+3.11. With PRA replaced by pBPA + PR the items 1-6 in Definition
3.3.2 (on pg. 49) define the set of static processes SP

∞(pBPA + PR), and the items 1-4 in Definition
3.3.3 (on pg. 49) and 3.3.4 (on pg. 50) define the set of trivial static processes D∞(pBPA + PR) and
the set of dynamic processes DP

∞(pBPA + PR), respectively. The definition of the PDF function µ
on PT

∞(pBPA + PR) is given in Definition 3.3.14.

Definition 3.3.14. (PDF for pBPA +PR) The probability distribution function on PT
∞(pBPA +PR)

is defined by the equalities in Table 3.6 and 3.7 and 3.12.

Chapter 3. Probabilistic Process Algebra 55

a ; ă δ ; δ̆

x ; x′

x · y ; x′ · y
x ; x′, y ; y′

x+ y ; x′ + y′
x ; z

x tπy ; z, y tπx ; z

Table 3.8: Probabilistic transitions for pBPA.

〈tX |E〉; u

〈X|E〉; u

x ; x′

Πn(x) ; Πn(x′)

Table 3.9: Probabilistic transitions for recursion and projection.

Properties of the PDF Now, since the definition of the probability distribution function µ of pBPA+
PR is completed, we can prove that it is well defined. This proof goes in three steps. The third step
is the main result and the other two are only auxiliary results used in its proof. In fact, they describe
the part of the proof in the third step concerning < X|E > constants. Having this result, it is easy
to prove that µ is well defined on PT

∞(pBPA + PR) using the inductive structure of the elements of
PT

∞(pBPA + PR).

Proposition 3.3.15. If t is a guarded process, then µ(t, u) is well defined for any u ∈ PT
∞(pBPA +

PR).

Proof. The proof is given by induction on the structure of guarded terms (see Remark 3.3.7).

Case t ≡ a, a ∈ Aδ. For any u, µ(a, u) =

{

1, if u ≡ ă
0, otherwise

. Hence, for t ≡ a, µ(t, u) is defined.

Case t ≡ g · s. For any u, µ(g · s, u) =

{

µ(g, v), if u ≡ v · s
0, otherwise

. Since µ(g, v) is defined, it

follows that µ(g · s, u) is defined.

Case t ≡ Πn(g). For any u, µ(Πn(g), u) =

{

µ(g, v), if u ≡ Πn(v)
0, otherwise

. Since µ(g, v) is defined,

µ(Πn(g), u) is defined as well.

Case t ≡ g + h. For any u, µ(g+h, u) =

{

µ(g, v) · µ(h, w), if u ≡ v + w
0, otherwise

. Since µ(g, v) and

µ(h, w) are defined, it follows that µ(g + h, u) is defined.

Case t ≡ g tπh. For any u, µ(g tπh, u) = π · µ(g, u) + (1 − π) · µ(h, w) and since µ(g, u) and
µ(h, u) are defined, it follows that µ(g tπh, u) is defined.

�

Proposition 3.3.16. Let E be a guarded recursive specification with the root variable X . Then
µ(< X|E >, u) is defined for any u.

56 3.3. Operational semantics

ă
a→√ x

a→ x′

x · y a→ x′ · y
x

a→ √

x · y a→ y

x
a→ x′

x + y
a→ x′, y + x

a→ x′
x

a→√

x+ y
a→ √, y + x

a→√

Table 3.10: Deduction rules for action transitions for pBPA.

x
a→ x′

Πn+1(x)
a→ Πn(x′)

x
a→√

Πn(x)
a→√

x
a→ x′

Π1(x)
a→ √

Table 3.11: Action transitions for projection.

Proof. We make the following observation. Lemma 3.2.13 and the definition of the µ function over
< Y |E > constants (Table 3.12) guarantee that it is sufficient to consider only completely guarded
recursive specifications. Therefore, µ(< Y |E >, u) is well defined if µ(tY , u) is well defined. As tY
is a guarded term µ(tY , u) is well defined according to Proposition 3.3.15. �

Example 3.3.17. Let us consider the following recursive specification:

E =
{

Y = (Z1 + Z2) t0.5Z3, Z1 = a · Z1 + Z2, Z2 = c · Z2, Z3 = b · Z3

}

.

The relation u→ ofE is shown in Figure 3.3. If u ∈ PT
∞(pBPA+PR), then the definition of µ induces

the following system of equations in R:
µ(< Y |E >, u) = 0.5 · µ(< Z1|E >, u1) · µ(< Z2|E >, u2)

+0.5 · µ(< Z3|E >, u), if u ≡ u1 + u2

µ(< Z1|E >, u1) = µ(a· < Z1|E >, u11) · µ(< Z2|E >, u12), if u1 ≡ u11 + u12

µ(< Z2|E >, u2) = µ(c, c̆), if u2 ≡ c̆· < Z2|E >
µ(a· < Z1|E >, u11) = µ(a, ă), if u11 ≡ ă· < Z1|E >

µ(< Z3|E >, u) = 0, if u ≡ u1 + u2 6≡ b̆· < Z3|E >
Let us emphasize that since tZ2 ≡ c · Z2 and tZ3 ≡ b · Z3 are guarded terms, the values

µ(tZ2, u) and µ(tZ3 , u) are defined for every u according to Proposition 3.3.15. Also by the defi-
nition µ(< Z2|E >, u) = µ(tZ2, u) and µ(< Z3|E >, u) = µ(tZ3, u). It implies that µ(< Z2|E >, u)
and µ(< Z3|E >, u) are defined as well.

Lemma 3.3.18. µ is well-defined on PT(pBPA + PR).

Proof. Since PT
∞(pBPA + PR) is a disjoint union of SP

∞(pBPA + PR) and DP
∞(pBPA + PR)

we split the proof into two parts, one which goes by induction on the structure of SP
∞(pBPA + PR)

processes and the other one by induction on the structure of DP
∞(pBPA + PR) processes.

Case SP
∞(pBPA + PR) processes. Let p be a SP

∞(pBPA + PR) process.

Chapter 3. Probabilistic Process Algebra 57

µ(Πn(x),Πn(z)) = µ(x, z) n ≥ 1

µ(< X|E >, z) = µ(< tX |E >, z)

Table 3.12: Equalities that complete PDF for pBPA + PR (part 3).

Z2

Y

Z1 Z3

Figure 3.3: Tree representation of u→ relation.

Case p ≡ a ∈ Aδ. For any u, µ(a, u) =

{

1, if u ≡ ă
0, otherwise

. Hence, for p ≡ a, µ(p, u) is

defined;

Case p ≡< X|E > for a guarded recursive specification E with the root X . The result fol-
lows from Proposition 3.3.16;

Case p ≡ q · r. For any u, µ(q · r, u) =

{

µ(q, v), if u ≡ v · r
0, otherwise

. Since µ(r, v) is defined

by the induction hypothesis, it follows that µ(q · r, u) is defined as well;

Case p ≡ Πn(q). For any u, µ(Πn(p), u) =

{

µ(q, v), if u ≡ Πn(v)
0, otherwise

. Since µ(q, v) is

defined by the induction hypothesis, µ(Πn(q), u) is defined as well;

Case p ≡ q + r. For any u, µ(q + r, u) =

{

µ(q, v) · µ(r, w), if u ≡ v + w
0, otherwise

. Since

µ(q, v) and µ(r, w) are defined, it follows that µ(q + r, u) is defined as well;

Case p ≡ q tπr. For any u, µ(q tπr, u) = π · µ(q, u) + (1 − π) · µ(r, w). Since µ(q, u) and
µ(r, u) are defined, it follows that µ(q tπr, u) is defined.

Case DP
∞(pBPA + PR) processes. Let us suppose that p ∈ DP

∞(pBPA +PR). Using induction we
prove that µ(p, u) = 0 which implies that it is well defined.

Case p ≡ ă, a ∈ Aδ. By the definition of the PDF µ(ă, u) = 0 for any u;

Case p ≡ q · r. µ(q · r, u) = µ(

{

µ(q, v), if u ≡ v · r
0, otherwise

. Since µ(q, v) = 0, by the induc-

tion hypothesis it follows that µ(q · r, u) = 0 for any u;

Case p ≡ Πn(q). µ(Πn(q), u) =

{

µ(q, v), if u ≡ Πn(v)
0, otherwise

. Since µ(q, v) = 0, by the

induction hypothesis µ(Πn(q), u) = 0 for any u;

58 3.3. Operational semantics

Case p ≡ q + r. µ(q + r, u) =

{

µ(q, v) · µ(r, w), if u ≡ v + w
0, otherwise

. Since µ(q, v) = 0 and

µ(r, w) = 0, by the induction hypothesis it follows that µ(q + r, u) = 0 for any u.
�

Remark 3.3.19. The strategy used in the proof of Proposition 3.3.16 makes it possible to assume
without loss of generality that tX is a guarded term, actually that the considered guarded specification
E is completely guarded. (Clearly, if it is not then the transformation described in the proof of
Lemma 3.2.13 will be applied until tX , which is the right-hand side of the equation of X in a guarded
recursive specification, becomes a guarded term after all its variables are replaced by guarded terms.)
Moreover, if the proof of one property is based on induction on the structure on guarded terms, then
it is obvious that it can easily be adapted into a proof of the same claim modified for all processes in
SP

∞(pBPA + PR), simply because the inductive definitions of guarded terms and SP
∞(pBPA + PR)

processes are very similar in the inductive steps. (See the proof of the previous proposition and
similarities of it with the proof of Proposition 3.3.15.) For that reason we do not write the proof of
a claim for SP

∞(pBPA + PR) processes if we have given the proof of the same claim for guarded
processes.

Proposition 3.3.20. The cPDF µ is well defined on PT
∞(pBPA + PR).

Proof. We only need to prove that for each guarded process t andM ⊆ PT
∞(pBPA+PR), µ(t,M) ∈

[0, 1]. The proof is given by induction on the structure of guarded terms.

Case t ≡ a ∈ Aδ. µ(a,M) =
∑

x∈M

µ(a, x) =

{

1, if ă ∈M
0, otherwise

;

Case t ≡ g · s. µ(g · s,M) =
∑

x∈M

µ(g · s, x) =
∑

x:x∈M&∃x′:x≡x′·s

µ(g · s, x) =
∑

x′:x′·s∈M

µ(g, x′) =

µ(g, {x′ : x′ · s ∈M}) ∈ [0, 1] by the induction hypothesis;

Case t ≡ Πn(g), n ≥ 1. µ(Πn(g),M) =
∑

x∈M

µ(Πn(g), x) =
∑

x:x∈M&∃x′:x≡Πn(x′)

µ(Πn(g), x)

=
∑

x′:Πn(x′)∈M

µ(g, x′) = µ(g, {x′ : Πn(x′) ∈M}) ∈ [0, 1] by the induction hypothesis;

Case t ≡ g + h. µ(g + h,M) =
∑

x∈M

µ(g + h, x) =
∑

x:x∈M&∃x′,x′′:x≡x′+x′′

µ(g, x′)µ(h, x′′) ≤

µ(g, {x′ : ∃x′′ : x′ + x′′ ∈ M})µ(h, {x′′ : ∃x′ : x′ + x′′ ∈ M}) ∈ [0, 1] by the induction
hypothesis;

Case t ≡ g tπh. µ(g tπh,M) =
∑

x∈M

µ(g tπh, x) =
∑

x∈M

(πµ(g, x) + (1− π)µ(h, x)) =

π
∑

x∈M

µ(g, x) + (1 − π)
∑

x∈M

µ(h, x) = πµ(g,M) + (1 − π)µ(h,M) ∈ [0, 1] by the induction

hypothesis.
�

Proposition 3.3.21. (Properties of PDF - part 1) Let be K,L ⊆ PT
∞(pBPA + PR).

i. µ(p tπq,K) = πµ(p,K) + (1− π)µ(q,K);

ii. µ(p+ q,K + L) = µ(p,K) · µ(q, L);

Chapter 3. Probabilistic Process Algebra 59

iii. µ(p · q,K · L) = µ(p,K) if q ∈ L, and µ(p · q,K · L) = 0 otherwise.

iv. µ(Πn(p),Πn(K)) = µ(p,K).

Proof. We give the proof only for the second case. The other cases can be proved in a similar way.
ii . µ(p+ q,K + L) =

∑

x∈K+L

µ(p+ q, x) =
∑

x≡k+l∈K+L

µ(p+ q, k + l)

=
∑

k∈K,l∈L

µ(p,K) · µ(q, L) =
∑

k∈K

(

µ(p, k) ·∑
l∈L

µ(q, l)

)

=

(

∑

k∈K

µ(p, k)

)

·
(

∑

l∈L

µ(q, l)

)

= µ(p,K) · µ(q, L).

�

Our intention to have the alternating model has been realized by introducing two types of transi-
tions: probabilistic and action transitions, and two types of processes: static and dynamic processes.
Although this is rather obvious from the definition of the deduction rules of TpBPA+PR and TpBPA the
next step is to justify that these rules define an alternating model. Together, Proposition 3.3.22 and
Proposition 3.3.23 given below guarantee the alternation of probabilistic and action transitions.

Proposition 3.3.22. If p is an element in SP
∞(pBPA+PR) and p ; u, then u ∈ DP

∞(pBPA+PR).

Proof. As explained in Remark 3.3.19 it is sufficient to prove the property for guarded processes.
Using the inductive definition of guarded terms we proceed by structural induction (see Remark 3.3.7
on page 51). Assume that g ; u for g a guarded process.

Case g ≡ a, a ∈ Aδ. a ; ă is the only possible probabilistic transition and ă ∈ DP
∞(pBPA + PR);

Case g ≡ h · r. h is a guarded process and r is an arbitrary process. From the assumption g ; u it
follows that h ; v and u ≡ v · r. From the inductive hypothesis v ∈ DP

∞(pBPA + PR) and
since r ∈ SP

∞(pBPA + PR) it follows that u ∈ DP
∞(pBPA + PR) as well;

Case g ≡ Πn(h). h is a guarded process. The assumption g ; u implies that h ; v, where u ≡
Πn(v). From the inductive hypothesis v ∈ DP

∞(pBPA + PR) and u ∈ DP
∞(pBPA + PR) as

well;

Case g ≡ h+ t. h and t are guarded processes. The assumption g ; u implies that h ; v and
t ; w and u ≡ v + w. From the inductive hypothesis v ∈ DP

∞(pBPA + PR) and w ∈
DP

∞(pBPA + PR) from which u ∈ DP
∞(pBPA + PR);

Case g ≡ h tαt. h and t are guarded processes. From the assumption g ; u it follows that h ; u
or t ; u. In both cases from the inductive hypothesis it follows that u ∈ DP

∞(pBPA + PR).
�

Proposition 3.3.23. If x is a DP
∞(pBPA + PR) process and x a→ p for some a ∈ A, then p ∈

SP
∞(pBPA + PR).

Proof. This is easy to prove by induction on the structure of DP
∞(pBPA + PR) processes. �

60 3.3. Operational semantics

Trivial static processes that form the set D∞(pBPA(+PR)) possess special properties. Especially,
they inherit properties that BPA(+PR) processes have; for instance they obey the idempotency law
- proved on page 43 (Proposition 3.2.17) for the set of terms D(pBPA) which basically contains all
terms representing trivial static processes in D∞(pBPA). In particular, their essential importance can
be found already in Remark 3.2.20 on page 44 (there, expressed in a syntactic way). To recall, every
finite process (closed term) can be rewritten into a normal form (basic term), which can be expressed
as a probability distribution (of course by use of the probability choice operator) over a set of trivial
static processes. Several propositions given below show more characteristics of the D

∞(pBPA(+PR))
processes that will be employed later in the proof of the Completeness theorem. Moreover, Proposi-
tion 3.3.31 states that even static processes that show non-trivial probabilistic behaviour, but that can
reach only a single equivalence class, basically behave as a trivial static process. This applies, for
example, to processes represented by the terms a t1/3a or a t1/2(a+ a) t1/3a.

Proposition 3.3.24. If u is a D∞(pBPA +PR) process, then the only possible probabilistic transition
of u is u ; ŭ.

Proof. The proof is given by induction on the structure of u.

Case u ≡ a, a ∈ Aδ. In this case the conclusion follows directly from the definition of the operational
rules;

Case u ≡ v · t. Since v ∈ D∞(pBPA + PR), by the inductive hypothesis we obtain that v ; v̆ is
the only possible probabilistic transition of v. Then u ; v̆ · t and this is the only possible
probabilistic transition of u;

Case u ≡ v + w. Since v, w ∈ D∞(pBPA+PR), from the inductive hypothesis it follows that v ; v̆
and w ; w̆ are the only possible probabilistic transitions of v and w, respectively. Then
u ; v̆ + w̆ and this is the only possible probabilistic transition of u;

Case u ≡ Πn(v). Since v ∈ D∞(pBPA+PR), the inductive hypothesis implies that v ; v̆ is the only
possible probabilistic transition of v. Then u ; Πn(v̆) and this is the only possible probabilistic
transition of u.

�

Corollary 3.3.25.

i. If u, v are D∞(pBPA + PR) processes, then u ; v̆ iff u ≡ v.

ii. If p is an interpretation of a basic pBPA + PR term p and p ; x̆ for some x ∈ DP
∞(pBPA +

PR), then x is an interpretation of a basic pBPA+PR term x. Moreover x ∈ B+(pBPA + PR).
�

Proposition 3.3.26. If u is a D∞(pBPA + PR) process, then µ(u, ŭ) = 1. �

Proposition 3.3.27. Let x and y be D∞(pBPA + PR) processes. Then x↔ y ⇔ x̆↔ y̆.

Proof. This result follows from Proposition 3.3.24. �

Chapter 3. Probabilistic Process Algebra 61

As pointed out in the introduction of this section the probability distribution function µ(p,) for
a given process p is introduced to avoid ambiguous situations that may occur if labelled probabilistic
transitions are used instead. Thus, the link between probabilistic transitions of p and the correspond-
ing PDF is very obvious. In the sequel we treat this link and we show that every probabilistic transition
of p, say p ; u, is indicated by the non-zero value of µ(p, u). Consequently, one may conclude that
the first clause in Definition 3.3.11 (page 53) carries redundant information in the presence of the
fourth clause. In fact, we provide in Proposition 3.3.32 a new definition for a probabilistic bisimula-
tion relation which will be proved equivalent to the one given earlier.

Proposition 3.3.28. Let be p ∈ PT
∞(pBPA + PR). Then µ(p, x) > 0 iff p ; x. �

Proof. According to Remark 3.3.19 we only need to prove that the claim holds for guarded processes.
We proceed by structural induction over guarded terms (see Remark 3.3.7 on page 51).

(⇒) Let be µ(g, u) > 0.

Case g ≡ a, a ∈ Aδ. From the assumption µ(a, u) > 0 it follows that u ≡ ă from which clearly
g ; u;

Case g ≡ h · t. h is a guarded process. From the definition of the probability distribution function
and from the assumption µ(g, u) > 0 follows that u ≡ v · t and µ(h, v) > 0. From the inductive
hypothesis it follows that h ; v and g ; u as well;

Case g ≡ Πn(h). h is a guarded process. From the definition of the probability distribution function
and from the assumption µ(g, u) > 0 follows that u ≡ Πn(v) and µ(h, v) > 0. From the
inductive hypothesis we obtain that h ; v and also g ; u as well;

Case g ≡ h+ t. h and t are guarded processes. From the definition of the probability distribution
function and from the assumptionµ(g, u) > 0 it follows that u ≡ v+w and µ(h, v)·µ(t, w) > 0.
Therefore, µ(h, v) > 0 and µ(t, w) > 0. Then, from the inductive hypothesis h ; v and t ; w.
Hence g ; u;

Case g ≡ h tπt. h and t are guarded processes. From the definition of the probability distribution
function and from the assumption µ(g, u) > 0 it follows that π ·µ(h, u)+ (1− π) ·µ(t, u) > 0.
Then either µ(h, u) > 0 or µ(t, w) > 0. From the inductive hypothesis it follows that either
h ; u or t ; u. In both cases g ; u.

(⇐) Let be g ; u.

Case g ≡ a, a ∈ Aδ. u ≡ ă and µ(g, u) = 1 > 0;

Case g ≡ h · t. h is a guarded process. From the assumption g ; u it follows that u ≡ v · t and
h ; v. The inductive hypothesis gives that µ(h, v) > 0. Since µ(g, u) = µ(h, v), µ(g, u) > 0
as well;

Case g ≡ Πn(h). h is a guarded process. From the assumption g ; u it follows that u ≡ Πn(v) and
h ; v. The inductive hypothesis gives that µ(h, v) > 0. Since µ(g, u) = µ(h, v), µ(g, u) > 0
as well;

Case g ≡ h+ t. h and t are guarded processes. According to the assumption g ; u, u ≡ v + w and
h ; v and t ; w. From the inductive hypothesis it follows that µ(h, v) > 0 and µ(t, w) > 0.
Therefore, µ(g, u) > 0 as well;

62 3.3. Operational semantics

Case g ≡ h tπt. h and t are guarded processes. From the assumption g ; u it follows that either
h ; u or t ; u. From the inductive hypothesis we obtain that either µ(h, u) > 0 or µ(t, u) >
0. In both cases µ(g, u) > 0.

�

Corollary 3.3.29. Let p ∈ PT
∞(pBPA + PR) and M ⊆ PT

∞(pBPA + PR). Then µ(p,M) > 0 iff
∃x ∈M : p ; x. �

Proposition 3.3.30. If p ∈ SP
∞(pBPA + PR), then µ(p,PT

∞(pBPA + PR)) = 1. �

Proof. From Proposition 3.3.22 and 3.3.28 it follows that it is sufficient to prove that
µ(g,DP

∞(pBPA +PR)) = 1. The proof is given by induction on the structure of the guarded process
g (see Remark 3.3.19 and Remark 3.3.7).

Case g ≡ a, a ∈ Aδ. µ(a,DP
∞(pBPA + PR)) =

∑

u∈ ��� ∞(pBPA+PR)

µ(a, u) = µ(a, ă) = 1;

Case g ≡ h · r. h is a guarded process and the inductive hypothesis is valid for h. Thus,

µ(g,DP
∞(pBPA + PR)) = µ(h · r,DP

∞(pBPA + PR)) = µ(h · r,DP
∞(pBPA + PR) · r)

= µ(h,DP
∞(pBPA + PR)) = 1;

Case g ≡ Πn(h). h is a guarded process and the inductive hypothesis is applicable on h. Thus,

µ(g,DP
∞(pBPA + PR)) = µ(Πn(h),DP

∞(pBPA + PR))
= µ(Πn(h),Πn(DP

∞(pBPA + PR)))
= µ(h,DP

∞(pBPA + PR)) = 1;

Case g ≡ h+ t. h and t are guarded processes and the inductive hypothesis is applicable on them.
So,
µ(g,DP

∞(pBPA + PR)) = µ(h+ t,DP
∞(pBPA + PR))

= µ(h+ t,DP
∞(pBPA + PR) + DP

∞(pBPA + PR))
= µ(h,DP

∞(pBPA + PR)) · µ(t,DP
∞(pBPA + PR)) = 1;

Case g ≡ h tαt. h and t are guarded processes and the inductive hypothesis can be applied on them.
Thus,
µ(g,DP

∞(pBPA + PR)) = α · µ(h,DP
∞(pBPA + PR))
+ (1− α) · µ(t,DP

∞(pBPA + PR))
= α · 1 + (1− α) · 1 = 1.

�

Proposition 3.3.31. If p ∈ SP
∞(pBPA + PR) and u ∈ D

∞(pBPA + PR) and µ(p, [ŭ]↔) = 1, then
p↔ u.

Proof. Let as assume that µ(p, [ŭ]↔) = 1 and p↔/ u. Since u ; ŭ and µ(u, ŭ) = 1, from the latter
assumption it follows that there is a v ∈ DP

∞(pBPA+PR) such that p ; v and v↔/ u. (Note that the
case in which p 6; is not possible since p ∈ SP

∞(pBPA + PR).) Then, from Proposition 3.3.28 we
obtain that µ(p, v̆) > 0 and also µ(p, [v̆]↔) > 0. Thus, since [ŭ]↔ 6= [v̆]↔ from Proposition 3.3.30
it follows that µ(p, [ŭ]↔) < 1 which contradicts the given assumption. �

Proposition 3.3.32. We define a relation ↔ in the following way. Let R be an equivalence relation
on the set PT

∞(pBPA + PR) such that:

Chapter 3. Probabilistic Process Algebra 63

1. If sRt and s a→ p for some a ∈ A, then there is a term q such that t a→ q and pRq;

2. If sRt and s a→ √, then t a→√;

3. If pRq, then µ(p,M) = µ(q,M) for each M ∈ PT
∞(pBPA + PR)/R.

p↔ q if there is a relation R that satisfies the three clauses and pRq. Then p↔ q iff p↔ q.

Proof. Straightforward from Proposition 3.3.28. �

Remark 3.3.33. Thus, Proposition 3.3.32 allows us to give shorter proofs, that is, the first clause of
Definition 3.3.11 does not need to be investigated if the fourth is proved to hold. So it gives us freedom
to use either relation. From now on we use the notation ↔ for both. Since this (important) property
is only a corollary of Proposition 3.3.28, for any model (to be presented later) in which Proposition
3.3.28 holds, Proposition 3.3.32 holds as well. Therefore, in any extension of pBPA(+PR) and
its model we only need to prove an adapted version of Proposition 3.3.28 extended over the added
operators. Then we have Proposition 3.3.32 for free.

Remark 3.3.34. From Proposition 3.3.22 and 3.3.23 and Corollary 3.3.29 it follows easily that we
can simplify proofs by taking into account:

1. ;⊆ SP
∞(pBPA + PR)× DP

∞(pBPA + PR),

2. a→⊆ DP
∞(pBPA + PR)× SP

∞(pBPA + PR),

3. a→√ ⊆ DP
∞(pBPA + PR),

4. for every probabilistic bisimulation R on PT
∞(pBPA + PR),

R ⊆ SP
∞(pBPA + PR)× SP

∞(pBPA + PR) ∪ DP
∞(pBPA + PR)× DP

∞(pBPA + PR),

5. µ(p,M) = 0 if p ∈ SP
∞(pBPA + PR) and M ⊆ SP

∞(pBPA + PR). In any other case
µ(p,M) ≥ 0. In particular, if M is a bisimulation equivalence class then µ(p,M) ≥ 0 if
p ∈ SP

∞(pBPA + PR) and M ⊆ DP
∞(pBPA + PR).

Remark 3.3.35. In the sequel a bisimulation relation will be often defined as an union of sev-
eral relations. If one of these relations is a bisimulation, then there is no need to investigate
transitions for pairs belonging to that relation. According to the previous remark, if non-trivial
pairs of these relations make a subset of SP

∞(pBPA + PR) × SP
∞(pBPA + PR), then it is suf-

ficient to investigate only probabilistic transitions for them. On the other hand, if it is a subset
of DP

∞(pBPA + PR) × DP
∞(pBPA + PR), only action transitions for the pairs in the relation

need to be considered. Moreover, when we explore the values of the PDF function for a pro-
cess p and an equivalence class M , it is sufficient to do so for p an element in SP

∞(pBPA + PR)
and M a subset of DP

∞(pBPA + PR). In short, we write M ∈ DP
∞(pBPA + PR)/R instead of

M ∈ PT
∞(pBPA + PR)/R and M ⊆ DP

∞(pBPA + PR).

In the sequel we prove the congruence property of the probabilistic bisimulation with respect to
the operators of pBPA + PR followed by the Soundness theorem.

Theorem 3.3.36 (Congruence of pBPA + PR). ↔ is a congruence relation on PT
∞(pBPA + PR)

with respect to the operators: +, ·, Πn, (n ≥ 1) and tπ, (π ∈ 〈0, 1〉).

64 3.3. Operational semantics

Proof. Since ↔ is an equivalence relation (Proposition 3.3.13) we only need to prove that ↔ is
preserved by the operators.

Sequential composition. Let x, y, z and w be PT
∞(pBPA + PR) processes such that x ↔ y and

z↔ w. So, there exist probabilistic bisimulations R1 and R2 such that (x, y) ∈ R1 and (z, w) ∈ R2.
Take the relation R:

R = Eq(α ∪ β ∪R2),

where
α = {(p · s, q · t) : p, q, s, t ∈ SP

∞(pBPA + PR), (p, q) ∈ R1, (s, t) ∈ R2} and
β = {(u·s, v ·t) : u, v ∈ DP

∞(pBPA+PR), s, t ∈ SP
∞(pBPA+PR), (u, v) ∈ R1, (s, t) ∈ R2}.

Using the definitions of α and β it is easy to validate the following statements:

S1: α and β are equivalence relations; α and R2 contain pairs of static processes relevant to R. For
every static process r, [r]β = {r};

S2: if (p · s, q · t) ∈ α and K ∈ PT
∞(pBPA + PR)/β, then p · s ; K iff q · t ; K (simply by

applying the deduction rule for the sequential composition in Table 3.8 on page 55);

S3: if p · s ; K for K ∈ PT
∞(pBPA + PR)/β, then K = [u · s]β for some u such that p ; u.

Moreover, from the definition of β we have that K = [u]R1 · [s]R2 ;

S4: since R2 and β are subsets of R and they are equivalence relations themselves, if M ∈
PT

∞(pBPA + PR)/R, then M =
⋃

i∈I

Mi, M =
⋃

j∈J

Kj for some non-empty index sets I and J

and for some equivalence classes Mi, i ∈ I and Kj, j ∈ J of R2 and β respectively.

Now, suppose that (r, r1) ∈ R for some r, r1 ∈ SP
∞(pBPA+PR), andM ∈ DP

∞(pBPA+PR)/R.
Then

1. if (r, r1) ∈ R2, having that µ(r,Mi) = µ(r1,Mi) for all i ∈ I and using Proposition 3.3.9 we
obtain:

µ(r,M) = µ(r,
⋃

i∈I

Mi) =
∑

i∈I

µ(r,Mi) =
∑

i∈I

µ(r1,Mi) = µ(r1,
⋃

i∈I

Mi) = µ(r1,M). (1)

2. if (r, r1) ∈ α, then r ≡ p · s, r1 ≡ q · t, for some p, q, s, t such that (p, q) ∈ R1 and (s, t) ∈ R2.
According to S3 and S4, M =

⋃

j∈J

Kj and Kj = [uj]R1 · [s]R2 and p · s ; uj · s and p ; uj.

Then from Proposition 3.3.21iii. we obtain:

µ(p · s,Kj) = µ(p · s, [uj]R1 · [s]R2) = µ(p, [uj]R1) = µ(q, [uj]R1)
= µ(q · t, [uj]R1 · [t]R2) = µ(q · t,Kj),

where [uj · t]β = [uj · s]β = Kj because (t, s) ∈ R2 and (uj · t, uj · s) ∈ β. Finally, from
Proposition 3.3.9 it follows that µ(r,M) = µ(p · s,M) = µ(p · s, ⋃

j∈J

Kj) =
∑

j∈J

µ(p · s,Kj) =
∑

j∈J

µ(q · t,Kj) = µ(q · t, ⋃
j∈J

Kj) = µ(q · t,M) = µ(r1,M). (2)

Alternative composition. Let x, y, z and w be PT
∞(pBPA + PR) processes such that x↔ y and

z ↔ w. There exist probabilistic bisimulations R1 and R2 such that (x, y) ∈ R1 and (z, w) ∈ R2.
Take the relation R:

R = Eq(α ∪ β ∪ R1 ∪R2),

Chapter 3. Probabilistic Process Algebra 65

where
α = {(p+ s, q + t) : p, q, s, t ∈ SP

∞(pBPA + PR), (p, q) ∈ R1, (s, t) ∈ R2} and
β = {(u+ l, v +m) : u, v, l,m ∈ DP

∞(pBPA + PR), (u, v) ∈ R1, (l, m) ∈ R2}.
Easily we can conclude that:

N1: α and β are equivalence relations; α, R1 and R2 contain pairs of static processes relevant to R.
Moreover, β equivalence classes of static processes are singletons.

N2: if (p+ s, q + t) ∈ α and K ∈ PT
∞(pBPA + PR)/β, then p+ s ; K iff q + t ; K;

N3: if p + s ; K for K ∈ PT
∞(pBPA + PR)/β, then K = [u + l]β for some u and l such that

p ; u and s ; l. Moreover, from the definition of β we have that K = [u]R1 + [l]R2 ;

N4: since R1, R2 and β are all subsets of R and they are equivalence relations themselves, if M ∈
PT

∞(pBPA + PR)/R, then M =
⋃

i1∈I1

M1
i1 , M =

⋃

i2∈I2

M2
i2 and M =

⋃

j∈J

Kj for some non-

empty index sets I1, I2 and J and for some equivalence classes M 1
i1 , (i1 ∈ I1), M2

i2 , (i2 ∈ I2)
and Kj, (j ∈ J) of R1, R2 and β, respectively.

Now, suppose that (r, r1) ∈ R for some r, r1 ∈ SP
∞(pBPA+PR) andM ∈ DP

∞(pBPA+PR)/R.
We discuss the following possibilities:

1. if (r, r1) ∈ Rk, k = 1, 2, then the fact that µ(r,M k
ik

) = µ(r1,M
k
ik

) for all ik ∈ Ik (k = 1, 2)
yields µ(r,M) = µ(r1,M) in a similar way as in (1) (in the case of sequential composition);

2. if (r, r1) ∈ α, then r ≡ p + s and r1 ≡ q + t for some p, q, s, t ∈ SP
∞(pBPA + PR) such that

(p, q) ∈ R1 and (s, t) ∈ R2. According to N3 and N4, M =
⋃

j∈J

Kj and Kj = [uj + lj]β =

[uj]R1 + [lj]R2 and p ; uj and s ; lj. Then from Proposition 3.3.21ii. we obtain:

µ(p+ s,Kj) = µ(p+ s, [uj]R1
+ [lj]R2

) = µ(p, [uj]R1
) · µ(s, [lj]R2

)

= µ(q, [uj]R1
) · µ(t, [lj]R2

) = µ(q + t,Kj).

Proposition 3.3.9 yields the conclusion µ(p + s,M) = µ(q + t,M) in a similar way as in (2)
(in the case of sequential composition).

Probabilistic choice. Let x, y, z andw be PT
∞(pBPA+PR) processes such that x↔ y and z↔w.

So, there exist probabilistic bisimulationsR1 and R2 such that (x, y) ∈ R1 and (z, w) ∈ R2. Take the
relation R:

R = Eq(α ∪R1 ∪ R2),

where
α = {(p tπs, q tπt) : p, q, s, t ∈ PT

∞(pBPA + PR), (p, q) ∈ R1, (s, t) ∈ R2}.
From the definition of α and R the following conclusions can easily be made:

PC1: α is an equivalence relation. α equivalence classes of dynamic processes are singletons;

PC2: since R1 and R2 are subsets of R and they are equivalence relations themselves, if M ∈
PT

∞(pBPA + PR)/R, then M =
⋃

i∈I

Ni and M =
⋃

j∈J

Kj for some non-empty index sets I

and J , and for some equivalence classes Ni, (i ∈ I), Kj, (j ∈ J) of R1 and R2, respectively.

Now, suppose that (r, r1) ∈ R for some r, r1 ∈ SP
∞(pBPA+PR) andM ∈ DP

∞(pBPA+PR)/R.
We need to consider the following cases:

66 3.3. Operational semantics

1. if (r, r1) ∈ Rk, k = 1, 2, then the result follows from Proposition 3.3.9 (see previous cases).

2. if (r, r1) ∈ α, then r ≡ p tπs and r1 ≡ q tπt for some p, q, s, t ∈ SP
∞(pBPA + PR) such that

(p, q) ∈ R1 and (s, t) ∈ R2. According to PC2, Proposition 3.3.9 yields the equalities:

µ(p,M) =
∑

i∈I

µ(p,Ni) =
∑

i∈I

µ(q, Ni) = µ(q,M) and

µ(s,M) =
∑

j∈J

µ(s,Kj) =
∑

j∈J

µ(t,Kj) = µ(t,M).

Using Proposition 3.3.21i. we obtain
µ(r,M) = πµ(p,M) + (1− π)µ(s,M) = πµ(q,M) + (1− π)µ(t,M) = µ(r1,M).

Projection. Let x and y be PT
∞(pBPA + PR) processes such that x ↔ y . So, there exist a

bisimulation relation R such that (x, y) ∈ R. We need to construct a relation Rn, n ≥ 1 such that
(Πn(x),Πn(y)) ∈ Rn which is a bisimulation. We consider the relation

Rn = Eq
(

α ∪ β
)

,

where
α = {(Πn(p),Πn(q)) : p, q ∈ SP

∞(pBPA + PR) & (p, q) ∈ R} and
β = {(Πn(u),Πn(v)) : u, v ∈ DP

∞(pBPA + PR) & (u, v) ∈ R}.
Let us note that:

P1: α and β are equivalence relations; only α contains the relevant pairs of static processes for Rn;

P2: if (Πn(p),Πn(q)) ∈ α and K ∈ PT
∞(pBPA + PR)/β, then Πn(p) ; K iff Πn(q) ; K;

P3: if Πn(p) ; K for K ∈ PT
∞(pBPA + PR)/β, then K = [Πn(u)]β for some u such that p ; u.

Moreover, from the definition of β follows that K = Πn([u]R).

Let us assume that (Πn(p),Πn(q)) ∈ α for p, q ∈ SP
∞(pBPA + PR) and M ∈ DP

∞(pBPA +
PR)/β. From the definition of α it follows that (p, q) ∈ R. Using Proposition 3.3.21iv. according to
P3 we obtain:

µ(Πn(p),M) = µ(Πn(p), [Πn(u)]β) = µ(Πn(p),Πn([u]R)) = µ(p, [u]R)
= µ(q, [u]R) = µ(Πn(q),Πn([u]R)) = µ(Πn(q), [Πn(u)]β) = µ(Πn(q),M).

�

In the proof of the Soundness theorem for every axiom of pBPA + PR we should compose a
probabilistic bisimulation on PT

∞(pBPA+PR) that relates processes represented by the left-hand side
and the right-hand side of the axiom. This means that for every constructed relation we have to look at
probabilistic and action transitions of related processes, as well as action terminations and the values
of PDFs. In any case, we will not go into many details. In particular, for the axioms of pBPA + PR
which occur as axioms of BPA +PR we do not write down the part(s) of the proof concerning action
transitions and action termination. We claim that these cases very much resemble the proof of the
Soundness theorem of BPA + PR and we direct the reader to look at [27] for instance. Furthermore,
we will use the alternative definition of the probabilistic bisimulation given on page 63 (as a part of
Proposition 3.3.32). Therefore, we can omit the part(s) of the proof regarding probabilistic transitions:
it is sufficient to justify the validity only of the fourth clause of Definition 3.3.11 in order to confirm
that the considered equivalence relation (associated to an axiom) is a probabilistic bisimulation.

Theorem 3.3.37 (Soundness of pBPA + PR). Let x and y be pBPA + PR terms. If pBPA + PR `
x = y then x↔ y.

Chapter 3. Probabilistic Process Algebra 67

Proof.

Axiom A1. Relation R is defined in the following way:

R = Eq
(

{(p+ q, q + p) : p, q ∈ SP
∞(pBPA + PR)}

∪{(u+ v, v + u) : u, v ∈ DP
∞(pBPA + PR)}

)

.

Suppose that (p + q, q + p) ∈ R for some p, q ∈ SP
∞(pBPA + PR) and M ∈ DP

∞(pBPA +
PR)/R. Then

µ(p+ q, u+ v) = µ(p, u) · µ(q, v) = µ(q, v)µ(p, u) = µ(q + p, v + u).

Moreover u + v ∈ M iff v + u ∈ M . From Proposition 3.3.10 it follows that µ(p + q,M) =
µ(q + p,M).

Axiom A2. Relation R is defined in the following way:

R = Eq
(

{((p+ q) + s, p+ (q + s)) : p, q, s ∈ SP
∞(pBPA + PR)}

∪ {((u+ v) + w, u+ (v + w)) : u, v, w ∈ DP
∞(pBPA + PR)}

)

.

Suppose that
(

(p + q) + s, p + (q + s)
)

∈ R for some p, q, s ∈ SP
∞(pBPA + PR) and M ∈

DP
∞(pBPA + PR)/R. The following equalities hold:

µ((p+ q) + s, (u+ v) + w) = µ(p+ q, u+ v) · µ(s, w) = µ(p, u) · µ(q, v) · µ(s, w)

and

µ(p+ (q + s), u+ (v + w)) = µ(p, u) · µ(q + s, v + w) = µ(p, u) · µ(q, v) · µ(s, w).

Moreover, (u + v) + w ∈ M iff u + (v + w) ∈ M . From Proposition 3.3.10 it follows that
µ((p+ q) + s,M) = µ(p+ (q + s),M).

Axiom AA3. Relation R is defined in the following way:

R = Eq
(

{(a+ a, a), (ă + ă, ă)}
)

.

It is sufficient to note that µ(a+ a, [ă]R) = 1 = µ(a, [ă]R) and µ(a+ a,M) = 0 = µ(a,M) for
any other R-equivalence class M different from [ă]R.

Axiom A4. Relation R is defined in the following way:

R = Eq
(

{((p+ q) · s, p · s+ q · s) : p, q, s ∈ SP
∞(pBPA + PR)}

∪ {((u+ v) · s, u · s + v · s) : u, v ∈ DP
∞(pBPA + PR),

s ∈ SP
∞(pBPA + PR)}

)

.

Suppose that
(

(p + q) · s, p · s + q · s
)

∈ R for some p, q, s ∈ SP
∞(pBPA + PR) and M ∈

DP
∞(pBPA + PR)/R. Then

µ((p+ q) · s, (u+ v) · s) = µ(p+ q, u+ v) = µ(p, u) · µ(q, v)

68 3.3. Operational semantics

and
µ(p · s+ q · s, u · s+ v · s) = µ(p · s, u · s) · µ(q · s, v · s) = µ(p, u)µ(q, v).

Moreover, (u + v) · s ∈ M iff u · s + v · s ∈ M . From Proposition 3.3.10 it follows that
µ((p+ q) · s,M) = µ(p · s+ q · s,M).

Axiom A5. Relation R is defined in the following way:

R = Eq
(

{((p · q) · s, p · (q · s)) : p, q, s ∈ SP
∞(pBPA + PR)}

∪ {((u · q) · s, u · (q · s)) : u ∈ DP
∞(pBPA + PR),

q, s ∈ SP
∞(pBPA + PR)}

)

.

If
(

(p · q) · s, p · (q · s)
)

∈ R for p, q, s ∈ SP
∞(pBPA + PR) and M ∈ DP

∞(pBPA + PR)/R,
then

µ((p · q) · s, (u · q) · s) = µ(p · q, u · q) = µ(p, u)

and
µ(p · (q · s), u · (q · s)) = µ(p, u).

Since, (u · q) · s ∈ M iff u · (q · s) ∈ M , µ((p · q) · s,M) = µ(p · (q · s),M) by Proposition
3.3.10.

Axiom A6. Relation R is defined in the following way:

R = Eq
(

{(p+ δ, p) : p ∈ SP
∞(pBPA + PR)} ∪ {(u+ δ̆, u) : u ∈ DP

∞(pBPA + PR)}
)

.

Notice that µ(p+δ, u+δ̆) = µ(p, u)·µ(δ, δ̆) = µ(p, u) and (u+δ̆ ∈M iff u ∈M). According to
Proposition 3.3.10 we obtain that µ(p+ δ,M) = µ(p,M) for each M ∈ DP

∞(pBPA+PR)/R.

Axiom A7. Relation R is defined in the following way:

R = Eq
(

{(δ · p, δ) : p ∈ SP
∞(pBPA + PR)} ∪ {(δ̆ · p, δ̆) : p ∈ SP

∞(pBPA + PR)}
)

.

For any p ∈ SP
∞(pBPA + PR), µ(δ · p, [δ̆]R) = µ(δ, [δ̆]R) = 1. Moreover, for any other

M ∈ DP
∞(pBPA + PR)/R, µ(δ · p,M) = µ(δ,M) = 0.

Axiom PrAC1. Relation R is defined in the following way:

R = Eq
(

{(p tπq, q t1−πp) : p, q ∈ SP
∞(pBPA + PR)}

)

.

Observe that all R equivalence classes of dynamic processes are singletons. Therefore, the
investigation of the action transitions and action termination for pairs of dynamic processes is
trivial (see also Remark 3.3.35 on page 63).

Suppose that (p tπq, q t1−πp) ∈ R for some p, q ∈ SP
∞(pBPA +PR) and M ∈ DP

∞(pBPA +
PR)/R. From Proposition 3.3.21ii. it follows that:
µ(p tπq,M) = π · µ(p,M) + (1− π) · µ(q,M)

= (1− π) · µ(q,M) + (1− (1− π)) · µ(p,M) = µ(q t1−πp,M).

Chapter 3. Probabilistic Process Algebra 69

Axiom PrAC2. Relation R is defined in the following way:

R = Eq
(

{(p tπ(q tρs), (p t π
π+ρ−πρ

q) tπ+ρ−πρs) : p, q, s ∈ SP
∞(pBPA + PR)}

)

.

Let us denote α = π + ρ − π · ρ in short. Suppose that
(

p tπ(q tρs), (p t π
α
q) tαs

)

∈ R and
M ∈ DP

∞(pBPA + PR)/R. From Proposition 3.3.21ii. the following equalities hold:

µ(p tπ(q tρs),M) = π · µ(p,M) + (1− π) · µ(q tρs,M)
= π · µ(p,M) + (1− π) · (ρ · µ(q,M) + (1− ρ) · µ(s,M))
= π · µ(p,M) + (1− π) · ρ · µ(q,M) + (1− π) · (1− ρ) · µ(s,M)

and

µ
((

p t π
α
q
)

tαs,M
)

= α · µ
(

p t π
α
q,M

)

+ (1− α) · µ(s,M)

= π · µ(p,M) + (1− π) · ρ · µ(q,M) + (1− π) · (1− ρ) · µ(s,M).

Thus, we have that µ(p tπ(q tρs),M) = µ
((

p t π
π+ρ−πρ

q
)

tπ+ρ−πρs,M
)

.

For action transitions and action termination see the remark in the case of axiom PrAC1.

Axiom PrAC3. Relation R is defined in the following way:

R = Eq
(

{(p tπp, p) : p ∈ SP
∞(pBPA + PR)}

)

.

Using Proposition 3.3.21ii. we derive that

µ(p tπp,M) = π · µ(p,M) + (1− π) · µ(p,M) = µ(p,M)

holds for every M ∈ DP
∞(pBPA + PR)/R.

For action transitions and action termination see the remark in the case of axiom PrAC1.

Axiom PrAC4. Relation R is defined in the following way:

R = Eq
(

{((p tπq) · s, p · s tπq · s) : p, q, s ∈ SP
∞(pBPA + PR)}

)

.

Suppose that
(

(p tπq) · s, p · s tπq · s
)

∈ R and M ∈ DP
∞(pBPA + PR)/R. Then:

µ((p tπq) · s, u · s) = µ(p tπq, u) = π · µ(p, u) + (1− π) · µ(q, u)

and

µ(p · s tπq · s, u · s) = π ·µ(p · s, u · s)+ (1−π) ·µ(q · s, u · s) = π ·µ(p, u)+ (1−π) ·µ(q, u).

From Proposition 3.3.10 it follows that µ((p tπq) · s,M) = µ(p · s tπq · s,M).

For action transitions and action termination see the remark in the case of axiom PrAC1.

70 3.3. Operational semantics

Axiom PrAC5. Relation R is defined in the following way:

R = Eq
(

{((p tπq) + s, p+ s tπq + s) : p, q, s ∈ SP
∞(pBPA + PR)}

)

.

Suppose that
(

(p tπq) + s, p + s tπq + s
)

∈ R and M ∈ DP
∞(pBPA + PR)/R. Then from

the definition of the PDF the following equalities are derived:

µ
(

(p tπq) + s, u+ w
)

= µ(p tπq, u) · µ(s, w) =
(

π · µ(p, u) + (1− π) · µ(q, u)
)

· µ(s, w)

and

µ(p+ s tπq + s, u+ w) = π · µ(p+ s, u+ w) + (1− π) · µ(q + s, u+ w)
= π · µ(p, u) · µ(s, w) + (1− π) · µ(q, u) · µ(s, w).

Finally from Proposition 3.3.10 it follows that µ((p tπq) + s,M) = µ(p+ s tπq + s,M).

For action transitions and action termination see the remark in the case of axiom PrAC1.

Axiom PR1. Relation Rn (n ≥ 1) is defined in the following way:

Rn = Eq
(

{(Πn(a), a), (Πn(ă), ă)}
)

.

From the definition of the PDF we have: µ(a, ă) = 1 and µ(Πn(a),Πn(ă)) = 1 and also
µ(a, [ă]Rn) = µ(Π1(a), [Π1(ă)]Rn) = 1. Moreover, for every other Rn equivalence class M
different from [ă]Rn we have µ(a,M) = µ(Π1(a),M) = 0.

Axiom PR2. Relation R is defined in the following way:

R = Eq
(

{(Π1(a · p), a), (Π1(ă · p), ă) : p ∈ SP
∞(pBPA + PR)}

)

.

From the definition of the PDF we have: µ(a, ă) = 1 and µ(Π1(a · p),Π1(ă · p)) = 1 and also
µ(a, [ă]R) = µ(Π1(a ·p), [Π1(ă ·p)]R) = 1. For any other R equivalence class M different from
[ă]R we have µ(a,M) = µ(Π1(a · p),M) = 0.

Axiom PR3. Relation Rn (n ≥ 1) is defined in the following way:

Rn = Eq
(

{(Πn+1(a · p), a · Πn(p)) : p ∈ SP
∞(pBPA + PR)}

∪{(Πn+1(ă · p), ă ·Πn(p)) : p ∈ SP
∞(pBPA + PR)}

)

.

From the definition of the PDF we have: µ(Πn+1(a · p),Πn+1(ă · p)) = 1 and µ(a · Πn(p), ă ·
Πn(p)) = 1 and also µ(Πn+1(a · p), [Πn+1(ă · p)]Rn) = µ(a · Πn(p), [ă · Πn(p)]Rn) = 1. For
any other Rn equivalence class M different from [Πn+1(ă · p)]Rn we have µ(a · Πn(p),M) =
µ(Πn+1(a · p),M) = 0.

Axiom PR4. Relation Rn (n ≥ 1) is defined in the following way:

Rn = Eq
(

{(Πn(p+ q),Πn(p) + Πn(q)) : p, q ∈ SP
∞(pBPA + PR)}

∪{(Πn(u+ v),Πn(u) + Πn(v)) : u, v ∈ DP
∞(pBPA + PR)}

)

.

Chapter 3. Probabilistic Process Algebra 71

Suppose that (Πn(p),Πn(q)) ∈ Rn and M ∈ DP
∞(pBPA + PR)/Rn. Then,

µ(Πn(p+ q),Πn(u+ v)) = µ(p+ q, u+ v) = µ(p, u) · µ(q, v)

and

µ(Πn(p) + Πn(q),Πn(u) + Πn(v)) = µ(Πn(p),Πn(u))µ(Πn(q),Πn(v)) = µ(p, u) · µ(q, v).

Using the fact that Πn(u+v) ∈M iff Πn(u)+Πn(v) ∈M , the result follows from Proposition
3.3.10.

Axiom prPR. Relation Rn (n ≥ 1) is defined in the following way:

Rn = Eq
(

{(Πn(p tρq),Πn(p) tρΠn(q)) : p, q ∈ SP
∞(pBPA + PR)}

)

.

Suppose that
(

Πn(p tρq),Πn(p) tρΠn(q)
)

∈ Rn and M ∈ DP
∞(pBPA + PR)/Rn. From the

definition of the PDF it follows that:

µ(Πn(p tρq),Πn(u)) = µ(p tρq, u) = ρµ(p, u) + (1− ρ)µ(q, u)

and
µ(Πn(p) tρΠn(q),Πn(u)) = ρµ(Πn(p),Πn(u)) + (1− ρ)µ(Πn(q),Πn(u))

= ρµ(p, u) + (1− ρ)µ(q, u).

The result follows from Proposition 3.3.10.

For action transitions and action termination see the remark in the case of axiom PrAC1.
�

Proving RSP in the model of pBPA + PR Now since we have a model with infinite processes of
pBPA + PR we define a head normal form for processes in PT

∞(pBPA + PR) and we can look into
the recursive principles. The main goal is to prove that RSP holds inM∞

pBPA+PR. To do so, we will see
that it is sufficient to prove that AIP− holds. The first two propositions can easily be proved and they
show that each process in our model has finitely branching. Then, we give the notion of head normal
form (HNF) and using the Soundness theorem we prove that each process in PT

∞(pBPA + PR) has
a head normal form. Knowing the form of infinite processes makes easier to work with them.

That processes of PT
∞(pBPA + PR) are boundedly branching is guaranteed by the following

results:

Proposition 3.3.38. If p ∈ PT
∞(pBPA + PR), then the set {u : p ; u} is finite. �

Proposition 3.3.39. If u ∈ DP
∞(pBPA + PR) then the set {p : u

a→ p, a ∈ A} is finite. �

Definition 3.3.40. We say a process p has a head normal form if there is an n ∈ N, processes pi and
probabilities ρi, 1 ≤ i ≤ n such that

p↔ p1 tρ1p2 . . . pn−1 tρn−1pn

and for each i,
pi↔

∑

j<si

aij · pij +
∑

k<ti

bik

for certain si, ti ∈ N with si + ti > 0, aij, bik ∈ Aδ and processes pij.
A process p is definable if p can be obtained from the atomic actions in A and δ by means of the

operators of pBPA + PR and guarded recursion.
A process p is finite if it is the interpretation of a closed term in pBPA + PR.

72 3.3. Operational semantics

Lemma 3.3.41. Each process in PT
∞(pBPA + PR) has a head normal form.

Proof. The proof is quite similar to the proof of Lemma 2.4.7 in [27] which says that each defin-
able process in the bisimulation model of BPA has HNF. The only differences in our proof are: for
probabilistic choice for which the conclusion follows directly from the definition of HNF, for non-
deterministic choice where the distribution law PrAC5 should be applied and for sequential compo-
sition where the axiom PrAC4 should be applied and the result follows straightforwardly. �

It is easy to see that each D∞(pBPA + PR) process p has a head normal form as follows:

p↔
∑

j<si

aij · pij +
∑

k<ti

bik

for certain si, ti ∈ N with si + ti > 0, aij, bij ∈ Aδ and processes pij . And each dynamic process
u ∈ DP

∞(pBPA + PR) has the form:

u↔
∑

j<si

ăij · pij +
∑

k<ti

b̆ik

for certain si, ti ∈ N with si + ti > 0, aij, bij ∈ Aδ and processes pij.
We will refer to this special HNF as dynamic HNF, for both.

From the construction of the model and its domain described on page 47 and Definition 3.3.2 the
following result is straightforward.

Lemma 3.3.42. RDP− holds in PT
∞(pBPA + PR). �

Using Lemma 3.3.41 it is easy to prove the following results. They are essential to prove the
Projection theorem. The proofs of all following properties are easy to derive using the normal form
of processes. We direct the reader to [27] for the complete proof of Lemma 3.3.47 obtained as a
corollary of the Projection theorem.

Proposition 3.3.43. Let p ∈ SP
∞(pBPA + PR). All finite projections of p are bisimilar with finite

processes in SP
∞(pBPA + PR). �

Proposition 3.3.44. Let u ∈ D
∞(pBPA + PR). All finite projections of u are bisimilar with finite

processes in D∞(pBPA + PR). �

Proposition 3.3.45. Let p and q be processes such that for some n ∈ N, n ≥ 1, Πn(p) ↔ Πn(q).
Then for each k ≤ n, Πk(p)↔Πk(q). �

Theorem 3.3.46 (Projection theorem). Let E be a guarded recursive specification with solutions p
and q. Then for all n ≥ 1, Πn(p)↔Πn(q).

Lemma 3.3.47. ([27] Theorem 2.4.19) AIP− implies RSP. �

We have come to the main theorem in this section; it states that the recursive principle AIP−

is valid inMpBPA+PR. According to Lemma 3.3.47, consequently, we conclude that every guarded
recursive specification in pBPA + PR has at most one solution inMpBPA+PR.

Chapter 3. Probabilistic Process Algebra 73

Theorem 3.3.48 (AIP− in PT
∞(pBPA + PR)). If for all n ≥ 1, Πn(p)↔Πn(q), then p↔ q8.

Proof. Let us consider the following relation on PT
∞(pBPA + PR):

R = Eq
(

{(p, q) : p, q ∈ SP
∞(pBPA + PR) & ∀n ≥ 1 : Πn(p)↔Πn(q)}

∪ {(u, v) : u, v ∈ DP
∞(pBPA + PR) & ∀n ≥ 1 : Πn(u)↔Πn(v)}

)

. (3.3)

Basically, R relates two processes iff they have bisimilar n-th projections for all possible n.
Let (p, q) ∈ R for some p, q ∈ SP

∞(pBPA + PR). p and q have HNFs9, i.e., for some n ∈ N,
processes pi and probabilities ρi, 1 ≤ i ≤ n,

p ≡ p1 tρ1p2 . . . pn−1 tρn−1pn (3.4)

where for each i,
pi ≡

∑

j<gi

aij · pij +
∑

k<hi

bik

for certain gi, hi ∈ N with gi + hi > 0, aij, bij ∈ Aδ and processes pij,
and for some s ∈ N, processes qi and probabilities σi, 1 ≤ i ≤ s,

q ≡ q1 tσ1q2 . . . qs−1 tσs−1qs (3.5)

where for each i,
qi ≡

∑

j<ei

cij · qij +
∑

k<fi

dik

for certain ei, fi ∈ N with ei + fi > 0, cij, dij ∈ Aδ and processes qij . Due to (p, q) ∈ R,

∀m ≥ 1 : Πm(p)↔Πm(q).

The remainder of the proof shows that p↔ q.

Probabilistic transitions. Let us suppose that p ; u for some u. From the definition of the oper-
ational rules and from (3.4) follows that u ≡ p̆i for some i, 1 ≤ i ≤ n. Now define, for
m ≥ 1

Si
m = {v : q ; v & Πm(p̆i)↔Πm(v)}.

We can make the following observations:

P1. Because Πm(p) ↔ Πm(q) and Πm(p) ; Πm(p̆i) it follows that there exists v such that
Πm(q) ; Πm(v) and Πm(v) ↔ Πm(p̆i). But from (3.5) we have that Πm(v) ≡ Πm(q̆t)
for certain t, 1 ≤ t ≤ s. Moreover, from (3.5) we also get that q ; q̆t. Combining these
results we obtain that q̆t ∈ Si

m. By this we have proved that S i
m 6= ∅ for each m ≥ 1.

P2. For each m ≥ 1, Si
m ⊆ {q̆1, . . . , q̆s} from which it follows that Si

m are finite sets.

P3. Πm+1(p̆i)↔Πm+1(q̆t) implies Πm(p̆i)↔Πm(q̆t). Hence, Si
1 ⊇ Si

2 ⊇

8Since p, q ∈ PT
∞(pBPA + PR) according to Proposition 3.3.43 and 3.3.44 they have finite branching.

9Actually we should write ↔ instead of ≡. But without loss of generality using the Congruence theorem we can
write ≡.

74 3.3. Operational semantics

Due to the fact that Si
m is a decreasing sequence of finite sets it follow that there exists anm ∈ N

such that
Si

m =
⋂

m≥1

Si
m 6= ∅.

Therefore, there is a v ∈ ⋂

m≥1

Si
m such that q ; v and Πm(v) ↔ Πm(u) for each m ≥ 1. In

other words, q ; v and (u, v) ∈ R.

Action transitions. Let (u, v) ∈ R for some u, v ∈ DP
∞(pBPA + PR). Then u and v have dynamic

HNFs, i.e.,
u ≡

∑

j<g

ăj · sj +
∑

k<h

b̆k

for certain g, h ∈ N with g + h > 0, aj, bj ∈ Aδ and processes sj , and

v ≡
∑

j<e

c̆j · rj +
∑

k<f

d̆k

for certain e, f ∈ N with e + f > 0, cj, dj ∈ Aδ and processes rj . Since (u, v) ∈ R, from the
definition of R it follows that:

∀m ≥ 1 : Πm(u)↔Πm(v).

Let us suppose that u a→ p for some p and atomic action a. From the definition of the operational
rules and the form of u it follows that a ≡ aj and p ≡ sj for some j, 1 ≤ j ≤ g. In a similar
way as before for each m ≥ 1 we define a set:

Si
m = {q : v

a→ q & Πm(ă · sj)↔Πm(q)},

and we conclude that:

A1. Πm(u)
a→ Πm−1(sj) for m ≥ 1. Since Πm(u) ↔ Πm(v) it follows that Πm(v)

a→
Πm−1(rk) and Πm−1(rk) ↔ Πm−1(sj) for some rk. In fact, v a→ rk for some k < e
(according to the form of v). Hence, rk ∈ Sj

m which implies Sj
m 6= ∅.

A2. For each m ≥ 1, Sj
m ⊆ {r1, . . . , re} from which it follows that Sj

m are finite sets.

A3. Πm+1(p)↔Πm+1(q) implies Πm(p)↔Πm(q). Therefore, Sj
1 ⊇ Sj

2 ⊇

Thus we have that
⋂

j≥1

Sj
m is a non-empty set. Thus, if q ∈ ⋂

j≥1

Sj
m, then v

a→ q and

Πm(p)↔Πm(q) for all m ≥ 1. It gives us the conclusion (p, q) ∈ R.

Action termination. Let be (u, v) ∈ R for some u, v ∈ DP
∞(pBPA + PR). Assume that u a→ √.

Then Π1(u)
a→ √ according to the deduction rules. Since Π1(u) ↔ Π1(v) we obtain that

Π1(v)
a→ √. From the deduction rules we conclude that v a→√.

PDF. Finally, we need to prove that for an arbitrary equivalence class M ∈ PT
∞(pBPA + PR)/R

and a pair (p, q) ∈ R for p, q ∈ SP
∞(pBPA + PR), it holds that µ(p,M) = µ(q,M). Again

we consider only reachable classes, i.e., we assume that there are elements u, v ∈ M such that
p ; u and q ; v. We write M = [u]R = [v]R. The previous discussion about probabilistic
transitions provides that u exists if and only if v exists; in other words M is reachable from p

Chapter 3. Probabilistic Process Algebra 75

iff it is reachable from q. Moreover, for u and v we have that for each m ≥ 1, Πm(u)↔Πm(v)
because (u, v) ∈ R. Therefore, [Πm(u)]↔ = [Πm(v)]↔ .

The idea of the proof is to find a link between the probability to reach the n-th projection of an
R equivalence class, say Πn([u]R) from p and the probability to reach the ↔ equivalence class
of Πn(u) also from p. Clearly, we are only interested in these elements of the two classes that p
can reach.

From the previous results and from the definition of R we have that:

N1. µ(p, [u]R) = µ(Πm(p),Πm([u]R)) by Proposition 3.3.21iv.,
N2. µ(q, [u]R) = µ(Πm(q),Πm([u]R)) also by Proposition 3.3.21iv.,
N3. Since Πm(p) ↔ Πm(q) for all m ≥ 1, the definition of ↔ implies

µ(Πm(p), [Πm(u)]↔) = µ(Πm(q), [Πm(u)]↔).

We claim that (the proof is given below):

Claim There is an mp ∈ N, mp ≥ 1 such that

µ(Πmp(p),Πmp([u]R)) = µ(Πmp(p), [Πmp(u)]↔).

Then, if mp and mq are such that: µ(Πmp(p),Πmp([u]R)) = µ(Πmp(p), [Πmp(u)]↔) and
µ(Πmq(q),Πmq([u]R)) = µ(Πmq(q), [Πmq(u)]↔) (the existence of mp and mq is guaranteed
by the claim above) and if m = max{mp, mq} (the reason we take max value among these two
is elaborated in the proof of the claim), it follows easily that:

µ(p,M) = µ(p, [u]R)
N1
= µ(Πm(p),Πm([u]R)

Claim
= µ(Πm(p), [Πm(u)]↔)

N3
= µ(Πm(q), [Πm(u)]↔)

Claim
= µ(Πm(q),Πm([u]R)

N2
= µ(q, [u]R) = µ(q,M).

This finishes the proof of the theorem. Next we give the proof of the claim.
�

Proof of the Claim. Using the definition of R it is easy to prove that for a process u reachable
from p, Πm([u]R) ⊆ [Πm(u)]↔ , for each m ≥ 1. This implies that:

µ(Πm(p),Πm([u]R)) ≤ µ(Πm(p), [Πm(u)]↔).

We will create a procedure that finds the smallest m for which µ(Πm(p),Πm([u]R)) =
µ(Πm(p), [Πm(u)]↔). Informally, if the degree of projection m is not high enough the m-th pro-
jection of two processes can be bisimilar even though the processes themselves are not bisimilar. But
since they are not bisimilar, there must exist a finite projection that “distinguishes” them. The idea of
the proof is the following: First we detect that the projection we cope with is not high enough since
[Πm(u)]↔ \Πm([u]R) 6= ∅. This means that if we look at some higher projection Πnu it will refine the
class [Πm(u)]↔ by removing all processes that are not bisimilar to u. To end the proof, we explain
that if a set of processes Z is considered instead of one single process, then it is sufficient to take the
highest projection among all projections Πnu for the elements of Z.

Let us suppose that for m ≥ 1, µ(Πm(p),Πm([u]R)) < µ(Πm(p), [Πm(u)]↔). (3.8)
Let Dm(u) = {w : w ∈ [Πm(u)]↔ \ Πm([u]R) and w is reachable from Πm(p)}. From the assump-
tion (3.8) follows that Dm(u) 6= ∅. Otherwise µ(Πm(p),Πm([u]R)) = µ(Πm(p), [Πm(u)]↔) which
contradicts the assumption.

Now, if w ∈ Dm(u), then Πm(p) ; w. Furthermore, there exist z ∈ DP
∞(pBPA + PR) and a

natural number nz such that:

76 3.3. Operational semantics

1. w ≡ Πm(z) & p ; z (by the SOS rules);

2. Πm(z)↔Πm(u) (since Πm(z) ∈ Dm(u) and therefore Πm(z) ∈ [Πm(u)]↔);

3. z 6∈ [u]R (since Πm(z) /∈ Πm([u]R));

4. Πnz(z) ↔/ Πnz(u) (from 3.) and Πnz(z) /∈ [Πnz(u)]↔ (from the definition of R as follows:
(u, z) /∈ R iff ¬(∀n ≥ 1 : Πn(z)↔Πn(u)) iff ∃nz : Πnz(z)↔/ Πnz(u));

5. ∀k ≤ m : Πk(z)↔Πk(u) (from 2. and Proposition 3.3.45)

6. nz > m (from 4. and 5.);

7. Πnz(z) /∈ Dnz(u) (from 4).

Moreover, from the definition of Πm([u]R) we have that

8. ∀v : ∀k : Πk(v) ∈ Πk([u]R)⇔ v ∈ [u]R, i.e., ∀v : ∀k : Πk(v) /∈ Πk([u]R)⇔ v /∈ [u]R.

Then from Proposition 3.3.45 and (8) follows that
∀v : ∀m ≥ 1 : Πm+1(v) ∈ Dm+1(u)⇒ Πm(v) ∈ Dm(u). (9)

Thus having that the set of reachable processes from p, say Z = {zi : p ; zi}, such that Π1(zi) ∈
D1(u) is a finite set, from the previous discussion follows that for each zi ∈ Z there is a natural
number nzi

such that Πnzi
(zi) ↔/ Πnzi

(u). Let nzi
be the least of all such numbers that exist for zi.

From the conclusion 7. we have that Πnzi
(zi) /∈ Dnzi

(u). And moreover from (9) follows that if
nzi
≤ nzj

, then Πnzi
(zi) /∈ Dnzj

(u). Taking

m = max
zi

{nzi
: Π1(zi) ∈ D1(u) & p ; zi}

we obtain that ∀zi ∈ Z : Π1(zi) ∈ D1(u) & p ; zi ⇒ Πm(zi) /∈ Dm(u). Or in other words,
if Πm(p) ; Πm(z) then (Πm(z) ∈ [Πm(u)]↔ iff Πm(z) ∈ Πm([u]R)). �

Example 3.3.49. Let R be the relation defined in (3.3) and consider process p which is the solution
of X = a t 1

2
a · a t 1

6
a · X t 1

4
a · a · X , for a ∈ A. Then, the set of reachable processes from p

is RP(p) = {ă, ă · a, ă · p, ă · a · p} and it is clear that [ă]R 6= [ă · a]R 6= [ă · p]R 6= [ă]R but
[ă · p]R = [ă · a · p]R. Hence, for all n ≥ 1: Πn([ă]R) 6= Πn([ă · a]R) 6= Πn([ă · p]R) 6= Πn([ă]R) but
Πn([ă · p]R) = Πn([ă · a · p]R).
From the definition of the PDF we calculate that: µ(Πn(p),Πn([ă]R) = 1/2, µ(Πn(p),Πn([ă · a]R) =
1/6 and µ(Πn(p),Πn([ă · p]R) = µ(Πn(p),Πn([ă · a · p]R) = 1/3.

n=1. Let us now investigate the classes [Π1(z)]↔ , for z ∈ RP(p). We know that [Π1(ă)]↔ = [Π1(ă·
a)]↔ = [Π1(ă·p)]↔ = [Π1(ă·a·p)]↔ . Therefore for all z ∈ RP(p), µ(Π1(p), [Π1(z)]↔) = 1.
Consequently, µ(Π1(p),Π1([z]R)) < µ(Π1(p), [Π1(z)]↔). Since the first projection does not
give the desired result: µ(Π1(p),Π1([z]R)) = µ(Π1(p), [Π1(z)]↔) as described in the proof of
the Claim we build the set D(z). We find that:

D1(ă) = {Π1(ă · a),Π1(ă · p),Π1(ă · a · p)}
D1(ă · a) = {Π1(ă),Π1(ă · p),Π1(ă · a · p)}
D1(ă · p) = D1(ă · a · p) = {Π1(ă),Π1(ă · a)}
and in the next step we investigate [Π2(z)]↔ .

Chapter 3. Probabilistic Process Algebra 77

n=2. We have that: [Π2(ă)]↔ 6= [Π2(ă ·a)]↔ = [Π2(ă ·p)]↔ = [Π2(ă ·a ·p)]↔ , and thusD2(ă) = ∅
and µ(Π2(p),Π2([ă]R)) = µ(Π2(p), [Π2(ă)]↔). From this we conclude that nă = 2. Further
we find that:

D2(ă · a) = {Π2(ă · p),Π2(ă · a · p)} and

D2(ă · p) = D2(ă · a · p) = {Π2(ă · a)}
Thus, for z ∈ {ă ·a, ă ·p, ă ·a ·p}we still have that: µ(Π2(p),Π2([z]R)) < µ(Π2(p), [Π2(z)]↔).
So, we go one projection higher.

n=3. Finally, for the third projection we obtain: D3(ă · a) = ∅ and D3(ă · p) = D3(ă · a · p) = ∅
which says that nă·a = 3 and nă·p = 3 and nă·a·p = 3. Thus we have derived that m = 3 and for
all z ∈ RP(p), and for all k ≥ 3, µ(Πk(p),Πk([z]R)) = µ(Πk(p), [Πk(z)]↔). �

3.3.3 Model of finite processes of pBPA and the properties of the model
One way to obtain the finite model of pBPA is to restrict theMpBPA+PR model presented in Section
3.3.2, namely to restrict the domain on finite processes and the other constitutive elements of the
model which are related to the infinite processes. Thus, the set of static processes, SP(pBPA), is
defined by the clauses 1, 3-5 in Definition 3.3.2 (pg. 49). The set D(pBPA) is defined by the clauses
1-3 in Definition 3.3.3 (pg. 49). The set of dynamic processes DP(pBPA) is defined by the clauses
1-3 in Definition 3.3.4 (pg. 50). Thus, the domain becomes PT(pBPA) = SP(pBPA) ∪ DP(pBPA).
The set of deduction rules is equal to DRpBPA+PR) (pg. 54 without the rules in Table 3.9 and 3.11.
The probability distribution function on PT(pBPA) is defined by the equalities given in Table 3.6+3.7
(pg. 51). The definition of bisimulation relation is given in Definition 3.3.11 (pg. 53) with PRA
replaced by pBPA.

Many properties remain correct in PT(pBPA) and we just list them without proofs. Thus, we
claim that the propositions: 3.3.18, 3.3.20, 3.3.21i-iii, 3.3.22, 3.3.23, 3.3.24, 3.3.26, 3.3.27, 3.3.28,
3.3.30, 3.3.31 and 3.3.32 hold when restricted on PT(pBPA). The corollaries 3.3.25 and 3.3.29 hold
as well. The proofs can be easily obtained by the proofs given in the previous two sections.

Theorem 3.3.50 (Congruence of PT(pBPA)). ↔ is a congruence relation on PT(pBPA) with respect
to the operators: +, · and tπ, π ∈ 〈0, 1〉. �

Theorem 3.3.51 (Soundness of pBPA). Let x and y be closed pBPA terms. If pBPA ` x = y, then
x↔ y. �

Completeness of pBPA

To prove completeness for pBPA with respect to the presented modelMpBPA, we use the direct method.
In order to do this, we first derive some results which relate transitions in the model with equalities
in the algebra. Some results guarantee the decrease of the number of operators or the decrease of the
number of occurrences of the probabilistic choice operator, npc, for terms connected by a transition. It
gives us a possibility to use induction on these numbers (based on the structure of terms) in the proofs
of the Completeness theorem and two lemmas towards it.

The direct method for proving the completeness property of non-probabilistic process algebras
PRA ([26, 108]) with respect to its bisimulation model M usually is based on the proof of the
following implication: for all closed terms s and t of PRA we have that

M |= s+ t↔ t⇒ PRA ` s+ t = t. (3.6)

78 3.3. Operational semantics

This implication usually is proved by induction. Then using the idempotency law of the non-
deterministic choice operator the completeness is directly obtained. In the case of probabilistic pro-
cess algebras this condition is not sufficient since the idempotency law does not hold for an arbitrary
term. But still it gives an idea about the directions of the proof. Namely, the implication used to prove
completeness in non-probabilistic process algebras, which is:

((s+ t↔ t⇒ s+ t = t) & s↔ t)⇒ s = t,

in probabilistic process algebras is valid only for D(PRA) terms (see Proposition 3.2.17). Thus,
partly this approach can be followed.

One more problem arises in the proof of (3.6) in the probabilistic setting. The use of the induction
method in this proof leads to a situation in which an application of the induction hypothesis for non-
D(PRA) terms is required. In other words, as a consequence of the inductive definition of the basic
terms in which the definition of basic B+(PRA) terms and B(PRA) terms interleaves, “interleaving”
of two hypothesis, one for basic B(PRA)\B+(PRA) terms and the other for basic B+(PRA) terms,
is necessary. For these reasons, two lemmas are given. The first one pertains to the part of the
Completeness theorem about basic B(PRA) \B+(PRA) terms, but it needs a hypothesis concerning
basic B+(PRA) terms. Later the second lemma considers basic B+(PRA) terms and in the proof the
first lemma is used.

The strategy taken in the given proofs is based on the Elimination theorem and the form of the
pBPA basic terms as described in Remark 3.2.20. The Elimination theorem (Theorem 3.2.23) yields
that it is enough to consider only basic terms instead of closed terms in general. By doing so, we can
benefit from the special form that basic terms of pBPA have. We know that a basic term is an element
of B+(pBPA) ⊂ D(pBPA) in which case we can use all properties of these terms given in the previous
section. Or it is a probabilistic choice of B+(pBPA) basic terms in which case we can employ an
inductive proof on the number of probabilistic choice operators occurring in the basic term.

Proposition 3.3.52. If p is a basic pBPA term in the form (3.2) (Remark 3.2.20), then p ; x with
µ(p, x) = ρ iff x ≡ xi for some i, 1 ≤ i ≤ n and ρ =

∑

j∈Qxi

πj , where Qxi
= {j : 1 ≤ j ≤ n,xi ≡

xj} and πn = 1−
n−1
∑

j=1

πj .

Proof. Let p be a basic term in the form p ≡ x1 tπ1x2 tπ2x3 . . .xn−1 tπn−1xn, for n ≥ 2. In-
formally, the claim says that if µ(p, x̆) = ρ > 0, then x may appear more than once as a sub-term
of p and the indices of all occurrences of x are placed in the set Qx. Moreover, ρ is the sum of all
probabilities assigned to these occurrences. It is clear that the set {Qx : x is a sub-term of p} is a
partition of the set {1, 2, . . . , n}. Instead of Qxi

we write Qi in short. The proof of both directions is
given by induction on n.

(⇐)

Basis Let n = 2, that is, p ≡ x1 tπ1x2. By Proposition 3.3.24 we have that the only possible prob-
abilistic transitions of x1 and x2 are x1 ; x̆1 and x2 ; x̆2, respectively. Besides, µ(x1, x̆1) = 1
and µ(x2, x̆2) = 1. From Corollary 3.3.25 i. and the definition of the operational rules follows
that

Case x1 6≡ x2. p ; x̆1 and p ; x̆2 with µ(p, x̆1) = π1 and µ(p, x̆2) = 1−π1. The result holds
because Q1 = {1} and Q2 = {2};

Chapter 3. Probabilistic Process Algebra 79

Case x1 ≡ x2. Q1 = Q2 = {1, 2} and
∑

j∈Q1

πj = 1. Therefore, p ; x̆1 with µ(p, x̆1) =

π + (1− π) = 1.

Inductive step Let be p ≡ x1 tπ1x2 tπ2 . . . tπn−1xn ≡
x1 tπ1(x2 t π2

1−π1

x3 . . .xn−1 tπn−1
1−π1

xn) for n ≥ 3. Let us write q for
x2 t π2

1−π1

x3 . . .xn−1 tπn−1
1−π1

xn. From Proposition 3.3.24 it follows that the only possible

probabilistic transition of x1 is x1 ; x̆1 and µ(x1, x̆1) = 1. From the inductive hypothesis
for k, 2 ≤ k ≤ n we have that q ; x̆k and µ(q, x̆k) = ρ′k, where ρ′k =

∑

j∈Q′
k

πj

1−π1
and

Q′
k = {j : 2 ≤ j ≤ n,xk ≡ xj}. Combining these two results it follows that two cases should

be investigated:

Case x1 ≡ xk for some k, 2 ≤ k ≤ n. Q1 = Q′
k ∪ {1} and also p ; x̆1 with µ(p, x̆1) = π1 +

(1− π1) · ρ′k = ρk, where ρk =
∑

j∈Q1

πj . Moreover, for all l, 2 ≤ l ≤ n, such that x1 6≡ xl

we have that Ql = Q′
l. Then from the definition of the operational rules we obtain p ; x̆l

and µ(p, x̆l) = (1− π1)ρ
′
l = ρl where ρl =

∑

j∈Ql

πj;

Case x1 6≡ xk for each k, 2 ≤ k ≤ n. Q′
k = Qk and Q1 = {1}. From the definition of the

operational rules we have p ; x̆1 and p ; x̆k. And also µ(p, x̆1) = π1 and µ(p, x̆k) =
(1− π1)ρ

′
k = ρk where ρk =

∑

j∈Qk

πj .

(⇒)

Basis Let n = 2, that is, p ≡ x1 tπ1x2 and p ; x̆ for some x̆ ∈ DP(pBPA). One of the following
cases occurs:

Case x1 ; x̆ and ¬(x2 ; x̆). Then µ(x2, x̆) = 0 and µ(p, x̆) = π1 · µ(x1, x̆). By Proposition
3.3.24 we have that µ(x1, x̆) = 1 and x1 ≡ x. From Corollary 3.3.25 i. follows that
x1 6≡ x2. This means that Q1 = {1} and µ(p, x̆) =

∑

j∈Q1

πj;

Case x2 ; x̆ and ¬(x1 ; x̆). Then µ(x1, x̆) = 0 and µ(p, x̆) = (1−π1)·µ(x2, x̆). In a similar
way as in the first case we obtain that µ(x2, x̆) = 1, x2 ≡ x and µ(p, x̆) =

∑

j∈Q2

πj;

Case x1 ; x̆ and x2 ; x̆. Then µ(p, x̆) = π1 ·µ(x1, x̆)+(1−π1) ·µ(x2, x̆). From Proposition
3.3.24 follows that µ(x1, x̆) = 1, x ≡ x1 and µ(x2, x̆) = 1 and x ≡ x2. Hence, Q1 =
Q2 = {1, 2} and µ(p, x̆) =

∑

j∈Q1

πj = 1.

Inductive step Let be p ≡ x1 tπ1x2 tπ2 . . . tπn−1xn ≡
x1 tπ1(x2 t π2

1−π1

x3 . . .xn−1 tπn−1
1−π1

xn) for n ≥ 3 and p ; x̆ for some x̆ ∈ DP(pBPA).
Let us use the abbreviation y ≡ x2 t π2

1−π1

x3 . . .xn−1 tπn−1
1−π1

xn. From the definition of
operational rules one of the following situations can occur:

Case x1 ; x̆ and ¬(y ; x̆). Then µ(p, x̆) = π1 · µ(x1, x̆). From Proposition 3.3.24 follows
that µ(x1, x̆) = 1 and x ≡ x1. Moreover, ¬(xk ; x̆) and x1 6≡ xk, for each k, 2 ≤ k ≤ n.
Therefore, Q1 = {1} and µ(p, x̆) =

∑

j∈Q1

πj;

80 3.3. Operational semantics

Case y ; x̆ and ¬(x1 ; x̆). Then µ(x1, x̆) = 0 and µ(p, x̆) = (1 − π1) · µ(y, x̆). From the
inductive hypothesis follows that there exists k, 2 ≤ k ≤ n such that x ≡ xk and µ(y, x̆) =
∑

j∈Q′
k

πj

1−π1
where Q′

k = {j : 2 ≤ j ≤ n,xk ≡ xj}. From ¬(x1 ; x̆) using Corollary

3.3.25 i. we have that x1 6≡ xk and Qk = {j : 1 ≤ j ≤ n,xk ≡ xj} = Q′
k. Thus,

µ(p, x̆) = (1− π1) · µ(y, x̆) = (1− π1) ·
∑

j∈Q′
k

πj

1−π1
=
∑

j∈Qk

πj;

Case x1 ; x̆ and y ; x̆. Then µ(p, x̆) = π1 · µ(x1, x̆) + (1− π1) · µ(y, x̆). From Proposition
3.3.24 follows that µ(x1, x̆) = 1 and x ≡ x1. Moreover, from the inductive hypothesis
we have that there exists k, 2 ≤ k ≤ n such that x ≡ xk and µ(y, x̆) =

∑

j∈Q′
k

πj

1−π1

with Q′
k = {j : 2 ≤ j ≤ n,xk ≡ xj}. Then x1 ≡ xk and also Qk = {j : 1 ≤

j ≤ n, xk ≡ xj} = Q′
k ∪ {1}. Thus, µ(p, x̆) = π1 · µ(x1, x̆) + (1 − π1) · µ(y, x̆) =

π1 + (1− π1) ·
∑

j∈Q′
k

πj

1−π1
= π1 +

∑

j∈Q′
k

πj =
∑

j∈Qk

πj.

�

Corollary 3.3.53. Let p be a basic pBPA term and M ∈ PT(pBPA)/ ↔ . If x ; x̆i, 1 ≤ i ≤ n,
n ∈ IN , are all possible probabilistic transitions of x to the equivalence class M with µ(p, x̆i) = σi ∈
〈0, 1], then either n ≥ 2 and

p ≡ x′
1 tρ1x

′
2 tρ2x

′
3 . . . tρm−1x

′
m,

for some m ∈ IN,m ≥ n and ρk ∈ 〈0, 1〉, 1 ≤ k ≤ m, (ρm = 1 −
m−1
∑

j=1

ρj), and for some partition

Q1, Q2, . . . , Qn of {1, 2, . . . , m} such that Qi = {j : 1 ≤ j ≤ m,xi ≡ x′
j} and

∑

j∈Qi

ρj = σi, or

p ≡ x′
1 tρ1x

′
2 tρ2x

′
3 . . . tρm−1x

′
m tρm(y1 tα1y2 tα2 . . . tαr−1yr)

for some m, r ∈ IN , m ≥ 1, r ≥ 1 and ρk, αl ∈ 〈0, 1〉, 1 ≤ k ≤ m, 1 ≤ l ≤ r and for some partition
Q1, Q2, . . . , Qn of the set {1, 2, . . . , m} such that Qi = {j : 1 ≤ j ≤ m,xi ≡ x′

j} and
∑

j∈Qi

ρj = σi

and for some basic B+ terms yl, yl /∈M or

n = 1 and σ1 = 1 and
p ≡ x1 tρ1x1 tρ2x1 . . . tρm−1x1,

for some m ∈ IN , m ≥ 1 and ρk ∈ 〈0, 1], 1 ≤ k ≤ m, (ρm = 1−
m−1
∑

j=1

ρj).

Lemma 3.3.54. (Cancellation law) If p, q and r are PT(pBPA) processes and π ∈ 〈0, 1〉 such that
p tπq↔ p tπr, then q↔ r.

Proof. Suppose p tπq ↔ p tπr. Then there exists a bisimulation R such that (p tπq, p tπr) ∈ R.
Take the relation:

R′ = Eq(R ∪ {(q, r)}).
In order to prove that R′ is a bisimulation we only need to investigate the pair (q, r). First, let us note
that if M ⊆ DP(pBPA) is an R equivalence class, then M is an R′ equivalence class as well because
(R′ \R)∩ (DP(pBPA)×DP(pBPA)) = ∅. Namely, DP(pBPA)/R′ = DP(pBPA)/R. Moreover, since

Chapter 3. Probabilistic Process Algebra 81

M ∈ PT(pBPA)/R and (p tπr, q tπr) ∈ R we have that µ(p tπq,M) = µ(p tπr,M). It implies
µ(q,M) = µ(r,M) by applying Proposition 3.3.21 i. To conclude, for each R′ equivalence class M ,
µ(q,M) = µ(r,M). �

Proposition 3.3.55. Let be x ∈ D(pBPA) and a ∈ A. Then:

i. if x̆ a→√, then pBPA ` x = a + x;

ii. if x̆ a→ u, then pBPA ` x = a · u + x and op(u) < op(x).

Proof.
i. Let us suppose that x̆ a→√. The proof is given by induction on the structure of x.

Case x ≡ b, b ∈ Aδ, b 6≡ a. It does not apply;

Case x ≡ a. pBPA ` x = a + a = a + x;

Case x ≡ y · z. It does not apply;

Case x ≡ y + z. From the assumption x̆ a→ √ follows that y̆ a→ √ or z̆ a→ √. By the inductive
hypothesis pBPA ` y = a + y or pBPA ` z = a + z. In each of these cases pBPA ` x =
y + z = a + y + z = a + x.

ii. Let us suppose that x̆ a→ u for some u ∈ SP(pBPA). The proof is given by induction on x.

Case x ≡ b, b ∈ Aδ. It does not apply;

Case x ≡ y · z. One of the following situations is possible:

Subcase y̆ a→ v. Then u ≡ v ·z. By the inductive hypothesis we have that pBPA ` y = a ·v+y

and op(v) < op(y). Therefore, pBPA ` x = y·z = (a·v+y)·z = a·v·z+y·z = a·u+x

and op(u) = op(v) + op(z) < op(x);

Subcase y̆ a→√. Then u ≡ z. From i. we have that pBPA ` y = a + y. Therefore, pBPA `
x = (a + y) · z = a · z + y · z = a · u + x and op(u) = op(z) < op(x);

Case x ≡ y + z. Then y̆ a→ u or z̆ a→ u. By the inductive hypothesis follows that pBPA ` y =
a ·u + y and op(u) < op(y) or pBPA ` z = a · u + z and op(u) < op(z). In any of these cases
pBPA ` x = y + z = a · u + y + z = a · u + x and op(u) < op(x)

�

Proposition 3.3.56. If p, q ∈ SP(pBPA) and v ∈ D(pBPA), then p tπq↔ v iff (p↔ v and q↔ v).

Proof. We have that µ(p tπq, v̆) = π ·µ(p, v̆)+(1−π)·µ(q, v̆) = 1, since p tπq↔ v and µ(v, v̆) = 1.
Hence, µ(p, v̆) = 1 and µ(q, v̆) = 1 and applying Proposition 3.3.31 we obtain the conclusion. The
other direction follows from the Congruence theorem. �

Lemma 3.3.57. If x, y, z ∈ D(pBPA), then z↔ x+ y implies z↔ x+ z.

82 3.3. Operational semantics

Proof. Let us assume that z↔ x + y for x, y, z ∈ D(pBPA) and let R be a bisimilation relation such
that (z, x + y) ∈ R. We prove that relation R′ given below is a bisimulation.

R′ = Eq
(

R ∪ {(z, x+ z), (z̆, x̆ + z̆)}).

We investigate only the “new” pairs in R′.

Probabilistic transitions and PDF. Since z ; z̆ and x ; x̆ are the only possible probabilistic transi-
tions of z and x, respectively, with µ(z, z̆) = 1 and µ(x, x̆) = 1, the only possible probabilistic
transition of x + z is x + z ; x̆ + z̆. Moreover µ(x + z, x̆ + z̆) = 1. Hence, by the definition
of R′ we have (z̆, x̆+ z̆) ∈ R′.

Action transitions. If z̆ a→ u, then also x̆ + z̆
a→ u and moreover uR′u.

Assume that x̆+ z̆
a→ u. Then either x̆ a→ u or z̆ a→ u. If x̆ a→ u then x̆+ y̆

a→ u and also z̆ a→ v
for some v such that (u, v) ∈ R. Then (u, v) ∈ R′ as well. The second case where z̆ a→ u is
trivial.

Action termination. If z̆ a→ √, then also x̆ + z̆
a→ √. Assume that x̆ + z̆

a→ √. Then either x̆ a→ √
or z̆ a→√. If x̆ a→ √ then x̆ + y̆

a→√ and also z̆ a→ √. The second case is trivial.

By this we have proved that R′ is a bisimulation relation such that (z, x + z) ∈ R′ which means that
z↔ x + z. �

Lemma 3.3.58. If u and z are basic terms such that at least one of them belongs to B(pBPA) \
B+(pBPA) and if

∀x,y ∈ B+ : op(x) + op(y) < op(u) + op(z)⇒ (x + y↔ y ⇒ x + y = y), (3.7)

then u↔ z ⇒ pBPA ` u = z.

Proof. Let us assume that u ∈ B(pBPA) \ B+(pBPA) or z ∈ B(pBPA) \ B+(pBPA) and that (3.7)
holds.

Case u ∈ B+(pBPA) and z ∈ B(pBPA) \ B+(pBPA). From Corollary 3.3.53 we have that

z ≡ z′1 tσ1z
′
2 tσ2z

′
3 . . . tσn−1z

′
n

for some n ≥ 2, σi ∈ 〈0, 1〉 and z′i ∈ B+(pBPA). From Lemma 3.3.56 it follows that for each
i, 1 ≤ i ≤ n, z′i↔ u. And from the Congruence theorem z ′i + u↔ u and u + z′i↔ z′i. Now,
op(z′i) + op(u) < op(z) + op(u) and from (3.7) it follows that pBPA ` z′

i = u for any i, 1 ≥
i ≥ n. Thus, pBPA ` z = z′

1 tσ1z
′
2 tσ2z

′
3 . . . tσn−1z

′
n = u tσ1u tσ2u . . . tσn−1u = u;

Case if z ∈ B+(pBPA) and u ∈ B(pBPA) \ B+(pBPA). This can be proved in a similar way as the
first case;

Case u, z ∈ B(pBPA) \ B+(pBPA). We proceed by induction on the number of probabilistic choices
occurring in u and z

Basis u ≡ v tρw and z ≡ x tπy, for v,w,x,y ∈ B+(pBPA). Let us note that it must be
the case that either v↔ x or v↔ y. Without loss of generality we assume that v↔ x.

Chapter 3. Probabilistic Process Algebra 83

Case ρ = π. Since v tπw↔ x tπy and v↔ x from Lemma 3.3.54 it follows that y↔w.
Because op(v)+op(x) < op(u)+op(z), v+x↔ x and x+v↔ v from (3.7) follows
that pBPA ` x = v + x = x + v = v. (1)
In a similar way we can derive that pBPA ` y = w as well. Finally, we obtain
pBPA ` u = z;

Case ρ > π. pBPA ` u = v tπ(v t ρ−π
1−ρ

w) and v tπ(v t ρ−π
1−ρ

w) ↔ x tπy. In a similar
way as above, we can obtain that pBPA ` x = v (since x ↔ v). From Lemma
3.3.54 we obtain v t ρ−π

1−ρ
w↔ y. Now from Proposition 3.3.56 it follows that v ↔ y

and w ↔ y. Thus, in a similar way like in (1) we obtain pBPA ` v = y and
pBPA ` w = y. Now it is easy to derive that pBPA ` u = z.

Inductive step Consider arbitrary basic terms from B(pBPA)\B+(pBPA) u and z. There
are v and x such that u ; v, z ; x and x↔ v. Let K = [v]↔ = [x]↔ . From Corollary
3.3.53 we obtain that:

Cu1 u ≡ u′
1 tρ1u

′
2 tρ2u

′
3 . . . tρm−1u

′
m m ≥ 2 or

Cu2 u ≡ u′
1 tρ1u

′
2 tρ2u

′
3 . . . tρm−1u

′
m tρmw, m ≥ 1

for m ∈ IN , ρi ∈ 〈0, 1〉, u′i ∈ K, 1 ≤ i ≤ m and for a basic term
w ≡ w1 tα1w2 tα2 . . . tαr−1wr, where r ∈ IN, r ≥ 1, αl ∈ 〈0, 1〉, wl ∈ B+(pBPA) and
wl /∈ K for 1 ≤ l ≤ r
and

Cz1 z ≡ z′1 tσ1z
′
2 tσ2z

′
3 . . . tσn−1z

′
n, n ≥ 2 or

Cz2 z ≡ z′1 tσ1z
′
2 tσ2z

′
3 . . . tσn−1z

′
n tσny, n ≥ 1

for n ∈ IN , σj ∈ 〈0, 1〉, z′j ∈ K j, 1 ≤ j ≤ n and for some basic term y ≡
y1 tβ1y2 tβ2 . . . tβs−1ys, where s ∈ IN, s ≥ 1, βk ∈ 〈0, 1〉, yk ∈ B+(pBPA) and
wk /∈ K for 1 ≤ k ≤ s. Thus, u′i↔ z′j and u′i + z′j↔ z′j and u′i + z′j↔ u′i.
In the case of Cu1 and Cz1 since op(u′i)+op(z′j) < op(u)+op(z) we obtain that pBPA `
u′

i + z′j = z′j and pBPA ` u′
i + z′j = u′

i. Therefore, pBPA ` u′
i = z′j for every i, j,

1 ≤ i ≤ n, 1 ≤ j ≤ m. Then we easily derive:

pBPA ` z ≡ z′1 tσ1z
′
2 tσ2z

′
3 . . . tσn−1z

′
n = u′

1 tσ1u
′
1 tσ2u

′
1 . . . tσn−1u

′
1 = u′

1

and also

pBPA ` u ≡ u′
1 tρ1u

′
2 tρ2z

′
3 . . . tρm−1u

′
m = z′1 tρ1z

′
1 tρ2z

′
1 . . . tρm−1z

′
1 = z′1.

Hence, pBPA ` z = u.
In the case of Cu2 and Cz2 we also have that pBPA ` u′

i = z′j for every i, j, 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Then

pBPA ` u ≡ u′
1 tρ1u

′
2 tρ2u

′
3 . . . tρm−1u

′
m tρmw

= u′
1 tρ1u

′
1 tρ2u

′
1 . . . tρm−1u

′
1 tρmw

= u′
1 tΣm

j=1ρj
w

and
pBPA ` z ≡ z′1 tσ1z

′
2 tσ2z

′
3 . . . tσn−1z

′
n tσny

= z′1 tσ1z
′
1 tσ2z

′
1 . . . tσn−1z

′
1 tσny

= z′1 tΣn
i=1σi

y

84 3.3. Operational semantics

Using the Soundness theorem we have: u ↔ u′
1 tΣm

i=1ρi
w and z ↔ z′1 tΣn

j=1σj
y. From

the assumption z ↔ u it follows that u′
1 tΣm

i=1ρi
w↔ u↔ z ↔ z′1 tΣn

j=1σj
y. Moreover,

µ(y,K) = 0 = µ(w,K). Thus, µ(u′1 tΣm
i=1ρi

w,K) =
m
∑

i=1

ρi and µ(z′1 tΣn
j=1σj

y,K) =

n
∑

j=1

σj and from the definition of bisimulation:
m
∑

i=1

ρi =
n
∑

j=1

σj . (Actually, this is the prob-

ability by which z and u reaches the equivalence class K.) Let us denote this sum by
α. So, we have that u′1 tαw ↔ z′1 tαy and u′1 ↔ z′1. By Theorem 3.3.36 we obtain
u′1 tαw ↔ u′1 tαy. Using Lemma 3.3.54 we have w ↔ y. Finally, since y ↔ w and w

and y have less probabilistic choice operators than z and u, respectively, from the induc-
tive hypothesis it follows that pBPA ` y = w. Having that pBPA ` z′

1 = u′
1 we conclude

pBPA ` z = u.
�

Lemma 3.3.59. If x and y are basic B+(pBPA) terms then:

x + y↔ y ⇒ pBPA ` x + y = y.

Proof. The lemma is proved by induction on op(x)+ op(y) and case distinction on the structure of x.

Case x ≡ δδδδδ. The result follows from axiom A6;

Case x ≡ a, a ∈ A. x̆ a→ √ and also x̆ + y̆
a→ √. By assumption x + y ↔ y we have that y̆ a→ √.

Then by Proposition 3.3.55i. we have that pBPA ` y = a + y and also pBPA ` x + y =
a + y = y;

Case x ≡ δδδδδ · t. By pBPA ` x + y = δδδδδ · t + y = δδδδδ + y = y;

Case x ≡ a · t. Then a · t + y↔ y. Since ă · t a→ t we obtain that y̆ a→ s and t↔ s. (5)
Since t and s are basic terms with op(t) < op(x) and op(s) < op(y) we consider the following
cases:

Subcase t, s ∈ B+(pBPA). Then op(t + s) < op(x + y) and from (5) we obtain t+ s↔ s and
t + s↔ t. By the inductive hypothesis pBPA ` t + s = s and pBPA ` t + s = t and also
pBPA ` t = s; (6.1)

Subcase t ∈ B(pBPA) \ B+(pBPA) or s ∈ B(pBPA) \ B+(pBPA). Then we want to apply
Lemma 3.3.58 on (5). To do so we need to show that the hypothesis of the lemma is ful-
filled. Thus, if u and z are basic B+(pBPA) terms such that op(u)+op(z) < op(t)+op(s),
then op(u) + op(z) < op(x) + op(y) since op(t) < op(x) and op(s) < op(y). Then
from the inductive hypothesis we obtain that the hypothesis in Lemma 3.3.58 is satisfied.
Therefore, the result of the lemma can be applied on (5). Thus, we obtain pBPA ` t = s.
(6.2)

In both cases, (6.1) and (6.2), we have pBPA ` x + y = a · t + y = a · s + y = y;

Case x ≡ x1 + x2. from the assumption x1 + x2 + y ↔ y using Proposition 3.3.57 we obtain x1 +
y ↔ y and x2 + y ↔ y. Then by the inductive hypothesis pBPA ` x1 + y = y and pBPA `
x2 + y = y. Hence, pBPA ` x + y = x1 + x2 + y = x1 + x2 + y + y = y + y = y.

Chapter 3. Probabilistic Process Algebra 85

�

Theorem 3.3.60 (Completeness theorem for pBPA). If z and u are closed pBPA terms, then z↔ u⇒
pBPA ` z = u.

Proof. By the Elimination theorem and the Soundness theorem it is sufficient to prove that this result
is valid for basic terms. Let us assume that u and z are basic pBPA terms and z↔ u.

Case z,u ∈ B+(pBPA). From the assumption z ↔ u we derive that z + u ↔ z + z ↔ z and z +
u ↔ u + u ↔ u. By Lemma 3.3.59 we obtain pBPA ` z + u = z and pBPA ` z + u = u.
Therefore, pBPA ` z = u.

Case u ∈ B(pBPA) \ B+(pBPA) or z ∈ B(pBPA) \ B+(pBPA). From the previous case we have that
∀x,y ∈ B+(pBPA) : x + y ↔ y ⇒ pBPA ` x + y = y. Since it is satisfied by all
basic B+(pBPA) terms, it is satisfied by all basic B+(pBPA) terms x and y such that op(x) +
op(y) < op(z) + op(u). Then, applying Lemma 3.3.58 on the assumption z ↔ u we obtain
pBPA ` z = u.

�

86 3.3. Operational semantics

Chapter 4

Parallel composition and communication

4.1 Introduction

In this section, we propose a variant of asynchronous probabilistic parallel composition which is
defined algebraically by a set of axioms. Then, by adding it together with other auxiliary operators
and the relevant axioms to the process algebra pBPA a probabilistic variant of ACP, denoted pACP+,
with asynchronous parallel composition is obtained.

With the intention to motivate the way parallel composition is defined let us look into the asyn-
chronous parallel composition of standard ACP. In ACP (as well as in CCS) two parallel processes
can perform any action independently, and also, they can synchronize if allowed (provided the com-
munication between the two processes is defined). Thus, the parallel processes are not forced to
synchronize (as opposed to the CSP parallel composition) but they can autonomously perform ac-
tions that could be synchronized. For example, if x ≡ a + b and y ≡ c + d merge and if a and c
communicate into an e action, then one possible scenario is that x and y synchronize and e is per-
formed, but x can also autonomously perform a which is then followed by y, or y can autonomously
perform c followed by x. (There are other possible scenarios as result of merging x and y, four in
total.) In other words, if x and y do not synchronize then each of them executes actions independently
of the other one; x resolves the choice between a and b without any influence and independently of
the choice between c and d in y. Algebraically this is expressed as x ‖ y = e + a‖ y + c‖ x + . . .,
where “. . .” expresses that some other events can take place. Note that the choice between all possible
sub-scenarios, e, a‖ y and c‖ x, is non-deterministic. Once again we emphasize that the left merge
operator was introduced in order to get a finite axiomatization of the merge operator.

Now, let us consider probabilistic processes p ≡ a t1/2b and q ≡ c t1/3d (in the probabilistic
setting) and follow the same reasoning - two processes either synchronize or perform actions au-
tonomously. Among four (see Figure 4.1), one possible scenario is that p performs a and q performs
c. This scenario has probability 1/6. We call it “a/c” scenario. Due to asynchronicity (the inter-
leaving reasoning) besides synchronizing into a communication action e(= a | c), each process can
independently perform its own action, p performs a which is then followed by q or q performs cwhich
is then followed by p. In fact, as soon as p has chosen to perform a, it may be executed regardless of
whether or not q has resolved its probabilistic choice, so each of the actions c and dmay be performed
in accordance with the given probabilities. And the same holds for q, if it performs the first action.
This means that the probabilistic choices are not expected to be resolved at the same time in both
parallel processes.

Thus, in total there are three possible sub-scenarios enclosed into the “a/c” scenario and the
choice which sub-scenario takes place is non-deterministic. The probability 1/6 corresponds to the

87

88 4.2. Process algebra

probability that this scenario occurs, but the probability of a particular sub-scenario is unknown.
This way of combining probabilities and parallel composition with the interleaving reasoning is

also considered in [49] where the authors use bundle probabilistic transition systems.
The chapter is organized as follows: first we introduce an extension of pBPA with probabilistic

parallel composition as described above. Then we construct the bisimulation model of it obtaining
only finite processes. Finally, we present another direction to extend pBPA with parallel composition
and show that it does not capture our intuition about probabilistic parallel processes.

2
3

1
2

1
3

1
3

2
3

badc

1
2

1
3

2
3

1
2

1
2

2
3

1
2

(a 1/2 b) ‖ (c 1/3d) with γ(a, c) = e, γ(a, d) = f, γ(b, c) = g, γ(b, d) = h

ba

1
2

dba cdca bc

h
d

d

b
g

cb
f

da

1
3

1
6

1
3

1
6

e
a

1
3

1
2

c

1
2

ca

Figure 4.1: An example of parallel composition of probabilistic processes.

4.2 Probabilistic Process Algebra with parallel composition
Axiom system of pACP+

Next we give an algebraic definition of the intuitively described parallel composition. First let us
note that it can simply be axiomatized by the infinite set of conditional axioms shown in Table 4.1.
The axioms show exactly what has been said in the introduction: if xi is one possible outcome of the
probabilistic choice of x which has probability πi and yj is the same for y with probability ρj , then
“xi/yj” is one possible scenario of the parallel composition of x and y which has probability πi · ρj .
This scenario consists of three alternatives, one of which is synchronization and the other two show
asynchronous behaviour of the parallel composition x ‖ y within the xi/yj scenario. Of course, here
we assume that xi and yj do not have unresolved probabilistic choices. This assumption/requirement
is expressed exactly by the condition of the axioms: xi = xi +xi and/or yj = yj + yj. In other words,
a term p satisfies the equation p = p + p iff pACP+ ` p = pb for a basic term pb ∈ B+ (see also
Lemma 4.3.17).

The next step is to give a finite axiomatization of the merge operator. For that purpose we introduce
a new quaternary operator called “merge with memory” and denote it by]||[. The finite set of axioms
which define this operator and the merge operator as well is shown in Table 4.2.

The axiom PrMM1 expresses the relation between the merge operator and the new merge with
memory operator. Namely, to expand the expression x ‖ y in the first step it is necessary to “copy”
and “memorize” the initial terms x and y. They will be needed in later steps of the derivation

Chapter 4. Parallel composition and communication 89

for n ≥ 2, m ≥ 2, x ≡ x1 tπ1x2 . . . tπn−1xn, y ≡ y1 tρ1y2 . . . tρm−1ym

xi = xi + xi, yj = yj + yj ⇒ x ‖ y = tπi·ρj ,1≤i≤n,1≤j≤m(xi‖ y + yj‖ x+ xi | yj)

for n ≥ 2, x ≡ x1 tπ1x2 . . . tπn−1xn

xi = xi + xi, y = y + y ⇒ x ‖ y = tπi,1≤i≤n(xi‖ y + y‖ x + xi | y)

for m ≥ 2, y ≡ y1 tρ1y2 . . . tρm−1ym

x = x + x, yj = yj + yj ⇒ x ‖ y = tρj ,1≤j≤m(x‖ y + yj‖ x + x | yj)

x = x + x, y = y + y ⇒ x ‖ y = x‖ y + y‖ x + x | y

Table 4.1: Parallel composition defined by infinite set of axioms.

x ‖ y = (x, x)]||[(y, y) PrMM1
(x tπx

′, z)]||[(y, w) = (x, z)]||[(y, w) tπ(x′, z)]||[(y, w) PrMM2
(x, z)]||[(y tπy

′, w) = (x, z)]||[(y, w) tπ(x, z)]||[(y′, w) PrMM3

x = x+ x, y = y + y ⇒ (x, z)]||[(y, w) = x‖ w + y‖ z + x | y PrMM4

Table 4.2: Axioms for the merge with memory operator.

when PrMM4 will be applied (see also the explanation below). If x (y) does still have an unre-
solved probabilistic choice, then before interleaving takes place it has to be resolved. The axiom
PrMM2 (PrMM3) shows exactly the way this probabilistic choice is resolved. It expresses that
the probability distribution (probabilistic choice) over sub-terms of x (y) induces a probability distri-
bution over the set of all possible scenarios of the parallel composition x ‖ y. The axiom PrMM4
shows the “x/y” scenario of the parallel composition z ‖w, under assumption that z and w are the
initial parallel processes. (Note that the last axiom in Table 4.1 resembles this one.)

If we go back to the axioms in Table 4.1, we notice that x and y appear in the right-hand side
of the axioms and x and y are exactly the terms which have started the parallel composition. Here,
in the finite axiomatization, we also need to keep track of these terms as we have mentioned above,
so they will be “recalled” when the interleaving of x and y takes place. For that reason the merge
with memory operator has two arguments more, the second z and the fourth w argument used to store
the initial parallel terms. (In the last axiom in Table 4.1 z is exactly x and w is y and in any of
these axioms the initial terms are given explicitly.) Thus, these arguments stay unchanged during the
derivation/transformation until the last step, in which PrMM4 is applied.

Let us summarize the definition of the probabilistic version of ACP called Algebra of Communi-
cating Processes with probabilistic choice pACP+, where + stands for the extra merge operator added
to this algebra. pACP+ is parametrized by a set of atomic actions A and a communication function
γ : Aδ × Aδ → Aδ which indicates atomic actions that communicate. This function is assumed to be
commutative and associative, and satisfies the equation γ(δ, a) = δ for all a ∈ Aδ. It has a signature

90 4.2. Process algebra

consisting of a set of constants A and the constant δ and the operators of pBPA, three binary opera-
tors: ‖ (merge, parallel composition), ‖ and | (communication merge), a unary operator ∂H with
H ⊆ A (encapsulation operator) and a quaternary operator]||[(merge with memory operator). The
set of axioms consists of the axioms of pBPA in Table 3.1, 3.2 and 3.3 as well as the axioms given in
Table 4.2 and 4.3 together with the conditional axioms given in Table 4.4.

The new axioms that do not appear in the axiomatization of ACP are: PrCM1 − 5 and PrD5.
PrCM1 expresses that the left-merge operator left-distributes over probabilistic choice operator.
PrCM2 and PrCM3 express that the communication merge distributes (left and right) over proba-
bilistic choice operator. And the encapsulation operator also distributes over the probabilistic choice
operator as axiom PrD5 shows.

a | b = γ(a, b) CF

a‖ x = a · x CM2
a · x‖ y = a · (x ‖ y) CM3
(x + y)‖ z = x‖ z + y‖ z CM4
(x tπy)‖ z = x‖ z tπy‖ z PrCM1

a | b · x = (a | b) · x CM5
a · x | b = (a | b) · x CM6
a · x | b · y = (a | b) · (x ‖ y) CM7
(x tπy) | z = x | z tπy | z PrCM2
x | (y tπz) = x | y tπx | z PrCM3

∂H(a) = a if a /∈ H D1
∂H(a) = δ if a ∈ H D2
∂H(x + y) = ∂H(x) + ∂H(y) D3
∂H(x · y) = ∂H(x) · ∂H(y) D4
∂H(x tπy) = ∂H(x) tπ∂H(y) PrD5

Table 4.3: Additional axioms for pACP+.

z = z + z ⇒ (x+ y) | z = x | z + y | z PrCM4
z = z + z ⇒ z | (x + y) = z | x+ z | y PrCM5

Table 4.4: Communication merge in pACP+.

Certainly, an interesting detail is the constrained version PrCM4 and PrCM5 of the ACP ax-
ioms CM8 and CM9, respectively. Again, the constraint has the form p = p + p which means
(as mentioned before) that the right-side equation of the conditional axiom can be applied only if the
right arguments of the communication merge is aD(pACP+) term in the case of PrCM4 axiom. And
similar for PrCM5 axiom. The process denoted by this term can perform only a trivial probabilistic
transition. Let us support the need of this condition by the following example.

Chapter 4. Parallel composition and communication 91

Example 4.2.1. Consider the two terms (a+ b) | (c tπd) and a | (c tπd) + b | (c tπd).
The process represented by the first terms does the following: it chooses between c and d according
to the given probabilities and then, the chosen action communicates with a or b. The latter choice
is non-deterministic due to non-determinism between a and b. Actually, we can derive the following
equations in pACP+:

(a+ b) | (c tπd) = ((a+ b) | c) tπ((a+ b) | d) = (a | c+ b | c) tπ(a | d+ b | d).
The second term a | (c tπd) + b | (c tπd) contains two probabilistic choices. Thus, the process rep-
resented by this term first resolves the probabilistic choices (which are identical in this case but of
course it does not mean the outcomes will be the same). Then, the outcome of the first choice com-
municates with a and the outcome of the second choice communicates with b. Each summand in the
alternative composition offers two (probabilistic) options: a | c and a | d for the first one, and b | c and
b | d for the second one.

The following equalities are provable in pACP+:
a | (c tπd) + b | (c tπd) = (a | c tπa | d) + (b | c tπb | d) =
(a | c+ b | c) tπ2(a | d+ b | c) tπ(1−π)(a | c+ b | d) tπ(1−π)(a | d+ b | d).
It is easy to conclude that these terms if interpreted in the model of pBPA represent two different

process terms. The second one has (a | d + b | c) as a sub-term with a positive assigned probability
which is not the case with the first term. But, if we would have unrestricted distribution laws instead
of PrCM4 and PrCM5 these terms would become equal. �

Example 4.2.2. Assuming that γ(a, c) = e, γ(a, d) = f , γ(b, c) = g and γ(b, d) = h, the algebraic
expansion in pACP+ of the term (a t1/2b) ‖ (c t1/3d) can be done in the following way:

(a t1/2b) ‖ (c t1/3d)
PrMM1

= (a t1/2b, a t1/2b)]||[(c t1/3d, c t1/3d)
PrMM2

= ((a, a t1/2b)]||[(c t1/3d, c t1/3d)) t1/2((b, a t1/2b)]||[(c t1/3d, c t1/3d))
2×PrMM3

=
(

((a, a t1/2b)]||[(c, c t1/3d)) t1/3((a, a t1/2b)]||[(d, c t1/3d))
)

t1/2
(

((b, a t1/2b)]||[(c, c t1/3d)) t1/3((b, a t1/2b)]||[(d, c t1/3d))
)

= ((a, a t1/2b)]||[(c, c t1/3d)) t1/6((a, a t1/2b)]||[(d, c t1/3d)) t1/3

((b, a t1/2b)]||[(c, c t1/3d)) t1/6((b, a t1/2b)]||[(d, c t1/3d))
4×PrMM4

=
(

a‖ (c t1/3d) + c‖ (a t1/2b) + (a | c)
)

t1/6
(

a‖ (c t1/3d) + d‖ (a t1/2b) + (a | d)
)

t1/3
(

b‖ (c t1/3d) + c‖ (a t1/2b) + (b | c)
)

t1/6
(

b‖ (c t1/3d) + d‖ (a t1/2b) + (b | d)
)

=
(

a · (c t1/3d) + c · (a t1/2b) + e
)

t1/6

(

a · (c t1/3d) + d · (a t1/2b) + f
)

t1/3
(

b · (c t1/3d) + c · (a t1/2b) + g
)

t1/6

(

b · (c t1/3d) + d · (a t1/2b) + h
)

.
�

Even though axiom CM1 in Table 2.4 is omitted in this axiomatization we are still able in pACP+

to derive all equations provable in ACP. One can observe that axioms PrMM2 and PrMM3 can
never be applied on an ACP term taken as a pACP+ term. Furthermore, the condition of axiom
PrMM4 is fulfilled for all such terms. Thus, for every two terms u and v from the subset of pACP+

terms that form the set of ACP terms we easily derive: u ‖ v = (u, u)]||[(v, v) = u‖ v + v‖ u + u | v
from which we obtain u ‖ v = u‖ v + v‖ u+ u | v. And this is exactly the CM1 axiom. Even more,
for these terms axioms PrCM4 and PrCM5 become exactly axioms CM8 and CM9 respectively.
Finally, if we omit all axioms in Table 4.3 that regard the probabilistic choice operator we end up with
the axiom system of ACP. Moreover, the removed axioms can never be applied to ACP terms since
they do not contain a probabilistic choice. So, we can conclude that every equation provable in ACP

92 4.2. Process algebra

is provable in pACP+ as well and no new equalities between ACP terms can be proved in pACP+.
Consequently, pACP+ is an equational conservative extension of ACP.

The set of basic terms of pACP+ is defined in the same way as the set of the basic terms in pBPA
(Definition 3.2.19). In order to show completeness of pACP+ for the bisimulation model defined in
the next section, first we need to prove that the operators added in the signature of pACP+ can be
eliminated in favour of the basic operators of pBPA. Namely, for every closed term in pACP+ there
is a basic term in pBPA that can be proved equal using the axioms. From now on by SP(pACP+) we
denote the set of all closed terms over the signature ΣpACP+.

Lemma 4.2.3. Let p and q be basic terms. Then there are closed pBPA terms r, s, t and u such that
pACP+ ` p‖ q = r, pACP+ ` p | q = s, pACP+ ` p ‖ q = t and pACP+ ` ∂H(p) = u for some
H ⊆ A. (Note: for the]||[operator see Lemma 4.2.4.)

Proof. The proof is given by double induction on the structure on p and q proving all four statements
in parallel. First we treat cases when p and q are basic B+ terms. The nonessential symmetric
cases of the given ones are not considered; the result about the ‖ operator depends only on the left
argument; the result about the ‖ and | does not depend on the order of the arguments. The part for
the encapsulation operator is given by induction on the structure of p only.

Case p ≡ a, a ∈ Aδ and q ≡ b ∈ Aδ. pACP+ ` p‖ q = a · b; pACP+ ` p | q = γ(a, b) and pACP+ `
p ‖ q = a · b + b · a + γ(a, b). All three obtained term on the right-hand sides are closed pBPA
terms. Moreover, if a /∈ H then pACP+ ` ∂H(p) = a, otherwise pACP+ ` ∂H(p) = δ. In both
cases a closed pBPA term is obtained;

Case p ≡ a, a ∈ Aδ and q ≡ b · q1. pACP+ ` p‖ q = a · b · q1 which is a closed pBPA term; pACP+ `
p | q = γ(a, b)·q1 which is a closed pBPA term; pACP+ ` p ‖ q = a·b·q1+b·(a ‖ q1)+γ(a, b)·q1.
Then by the inductive hypothesis there is a closed pBPA term t1 such that pACP+ ` a ‖ q1 = t1.
Thus, pACP+ ` p ‖ q = a · b · q1 + b · t1 + γ(a, b) · q1 which is a closed pBPA term;

Case p ≡ a · p1, a ∈ Aδ and q ≡ b · q1. pACP+ ` p‖ q = a · (p1 ‖ b · q1). By the inductive hypothesis
there is a closed pBPA term r1 such that pACP+ ` p1 ‖ b · q1 = r1. Therefore, pACP+ ` p‖ q =
a · r1 and a · r1 is a closed pBPA term;

pACP+ ` p | q = γ(a, b) · (p1 ‖ q1). By the inductive hypothesis there is a closed pBPA term
s1 such that pACP+ ` p1 ‖ q1 = s1. Therefore, pACP+ ` p | q = γ(a, b) · s1 and it is a closed
pBPA term;

pACP+ ` p ‖ q = a · (p1 ‖ b · q1) + b · (a · p1 ‖ q1) + γ(a, b) · (p1 ‖ q1). By the inductive
hypothesis there are closed pBPA terms t1, t2 and t3 such that pACP+ ` p1 ‖ b·q1 = t1, pACP+ `
a · p1 ‖ q1 = t2 and pACP+ ` p1 ‖ q1 = t3. Then pACP+ ` p ‖ q = a · t1 + b · t2 + γ(a, b) · t3
and we obtain a closed pBPA term;

pACP+ ` ∂H(p) = δ · ∂H(p1) = δ if a ∈ H . Otherwise, pACP+ ` ∂H(p) = a · ∂H(p1). By
the inductive hypothesis there is a closed pBPA term u1 such that pACP+ ` ∂(p1) = u1. Then,
pACP+ ` ∂H(p) = a · u1 which is a closed pBPA term;

Case p ≡ a, a ∈ Aδ and q ≡ q1 + q2. pACP+ ` p‖ q = a · q which is a closed pBPA term;

pACP+ ` p | q = (a | q1) + (a | q2). By the inductive hypothesis there are closed pBPA terms s1

and s2 such that pACP+ ` a | q1 = s1 and pACP+ ` a | q2 = s2. Then pACP+ ` p | q = s1 + s2

which is a closed pBPA term;

Chapter 4. Parallel composition and communication 93

pACP+ ` p ‖ q = a · q + q1‖ a + q2‖ a + a | q1 + a | q2. By the inductive hypothesis there
are closed pBPA terms t1, t2, t3 and t4 such that pACP+ ` q1‖ a = t1, pACP+ ` q2‖ a = t2,
pACP+ ` a | q1 = t3 and pACP+ ` a | q2 = t4. Then pACP+ ` p ‖ q = a · q + t1 + t2 + t3 + t4
which is a closed pBPA term;

Case p ≡ a · p1, a ∈ Aδ and q ≡ q1 + q2. pACP+ ` p‖ q = a · (p1 ‖ q). By the inductive hypothesis
there is a closed pBPA term r1 such that pACP+ ` p1 ‖ q = r1. Hence, pACP+ ` p‖ q = a · r1
which is a closed pBPA term;

pACP+ ` p | q = (a · p1 | q1) + (a · p1 | q2). By the inductive hypothesis there are closed pBPA
terms s1 and s2 such that pACP+ ` a · p1 | q1 = s1 and pACP+ ` a · p1 | q2 = s2. Then
pACP+ ` p | q = s1 + s2 which is a closed pBPA term;

pACP+ ` p ‖ q = a · (p1 ‖ q)+q1‖ p+q2‖ p+a ·p1 | q1 +a ·p1 | q2. By the inductive hypothesis
there are closed pBPA terms t1, t2, t3, t4 and t5 such that pACP+ ` p1 ‖ q = t1, pACP+ `
q1 ‖ p = t2, pACP+ ` q2‖ p = t3, pACP+ ` a · p1 | q1 = t4 and pACP+ ` a · p1 | q2 = t5. Then
pACP+ ` p | q = a · t1 + t2 + t3 + t4 + t5 which is a closed pBPA term;

Case p ≡ p1 + p2 and q ≡ q1 + q2. pACP+ ` p‖ q = (p1‖ q) + (p2‖ q). By the inductive hypothesis
there are closed pBPA terms r1 and r2 such that pACP+ ` p1‖ q = r1 and pACP+ ` p2‖ q = r2.
Then, pACP+ ` p‖ q = r1 + r2 which is a closed pBPA term;

pACP+ ` p | q = (p1 | q1) + (p1 | q2) + (p2 | q1) + (p2 | q2). By the inductive hypothesis there
are closed pBPA terms s1, s2, s3 and s4 such that pACP+ ` p1 | q1 = s1, pACP+ ` p1 | q2 = s2,
pACP+ ` p2 | q1 = s3 and pACP+ ` p2 | q2 = s4. Then pACP+ ` p | q = s1 + s2 + s3 + s4

which is a closed pBPA term;

pACP+ ` p ‖ q = (p1‖ q)+(p2‖ q)+(q1‖ p)+(q2‖ p)+(p1 | q1)+(p1 | q2)+(p2 | q1)+(p2 | q2).
By the inductive hypothesis there are closed pBPA terms t1, t2, . . . , t8 such that pACP+ `
p1‖ q = t1, pACP+ ` p2‖ q = t2, pACP+ ` q1‖ p = t3, pACP+ ` q2‖ p = t4,
pACP+ ` p1 | q1 = t5, pACP+ ` p1 | q2 = t6, pACP+ ` p2 | q1 = t7 and pACP+ ` p2 | q2 = t8.
Then pACP+ ` p | q = t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 which is a closed pBPA term;

pACP+ ` ∂H(p) = ∂H(p1) + ∂H(p2). By the inductive hypothesis there are closed pBPA terms
u1 and u2 such that pACP+ ` ∂H(p1) = u1 and pACP+ ` ∂H(p2) = u2. Thus, pACP+ `
∂H(p) = u1 + u2 which is a closed pBPA term;

By this all possibilities for basic B+ terms are exhausted. Still we need to investigate the cases
when p or q are B \ B+ basic terms.

Case p ∈ B+ and q ∈ B \ B+. For some m ∈ IN,m ≥ 2, qi ∈ B+ and ρi ∈ 〈0, 1〉 for 1 ≤ i ≤ m,
q ≡ q1 tρ1q2 tρ2 . . . qm−1 tρm−1qm. If we look at the proofs about the left merge operator in the
previous cases we can observe that the equations used there do not depend on the left argument
q. Therefore, since p is a basic B+ term the previous cases apply here as well (for the left merge
only). So we conclude that there is a closed pBPA term r such that pACP+ ` p‖ q = r;

pACP+ ` p | q = (p | q1) tρ1(p | q2) tρ2 . . . (p | qm−1) tρm−1 (p | qm) and the result follows from
the inductive hypothesis if applied on every term p | qi;

pACP+ ` p ‖ q = (p‖ q + q1‖ p + p | q1) tρ1(p‖ q + q2‖ p + p | q2) tρ2 . . . tρm−1(p‖ q +
qm‖ p + p | qm) and the result follows from the inductive hypothesis which is applicable on
every summand in any bracket on the right-hand side of this equation;

94 4.2. Process algebra

Case p ∈ B \ B+ and q ∈ B+. For some n ∈ IN, n ≥ 2, pi ∈ B+ and πi ∈ 〈0, 1〉 for 1 ≤ i ≤ n
and p ≡ p1 tπ1p2 tπ2 . . . pn−1 tπn−1pn. The only difference with the previous case is the left
merge. So, for it we have pACP+ ` p‖ q = (p1‖ q) tπ1(p2‖ q) tπ2 . . . (pn−1‖ q) tπn−1(pn‖ q)
and the result follows from the inductive hypothesis when it is applied on each term pi‖ q;

For the encapsulation operator we have:
pACP+ ` ∂H(p) = ∂H(p1) tπ1∂H(p2) tπ2 . . . ∂H(pn−1) tπn−1∂H(pn)
and the result follows from the inductive hypothesis when it is applied on each ∂H(pi);

Case p, q ∈ B \ B+. for some n ∈ IN, n ≥ 2, pi ∈ B+ and πi ∈ 〈0, 1〉 for 1 ≤ i ≤ n,
p ≡ p1 tπ1p2 tπ2 . . . pn−1 tπn−1pn and also for some m ∈ IN,m ≥ 2, qj ∈ B+ and ρj ∈ 〈0, 1〉
for 1 ≤ j ≤ m, q ≡ q1 tρ1q2 tρ2 . . . qm−1 tρm−1qm. Then the case about the left merge is the
same as in the previous case.

pACP+ ` p | q =
(

p1 tπ1p2 tπ2 . . . pn−1 tπn−1pn

)

|
(

q1 tρ1q2 tρ2 . . . qm−1 tρm−1qm
)

PrCM4(n×),P rCM5(n·m×)
= tπi·ρj :1≤i≤n,1≤j≤m(pi | qj).

By the inductive hypothesis there are closed pBPA terms sij for 1 ≤ i ≤ n and 1 ≤ j ≤ m such
that pACP+ ` pi | qj = sij . Then the result follows from the inductive hypothesis. For the case
p ‖ q we will obtain basically an expression which is an alternative composition of the previous
two cases (the case for the ‖ and | operators) which is easy to derive using the PrMM2 − 4
axioms. Again the result follows directly from the inductive hypothesis.

�

Lemma 4.2.4. If p, q, z and w are basic terms, then there is a closed pBPA term r such that pACP+ `
(p, z)]||[(q, w) = r.

Proof. We prove the claim using induction on the structure on p and q.

Case p, q ∈ B+. pACP+ ` (p, z)]||[(q, w) = p‖ w + q‖ w + p | q and the result follows from Lemma
4.2.3.

Case p ∈ B+ and q ∈ B \ B+. For some m ∈ IN,m ≥ 2, qi ∈ B+ and ρi ∈ 〈0, 1〉 for 1 ≤ i ≤ m,
q ≡ q1 tρ1q2 tρ2 . . . qm−1 tρm−1qm. Then
pACP+ ` (p, z)]||[(q, w) = (p, z)]||[(q1, w) tρ1(p, z)]||[(q2, w) tρ2 . . . tρm−1(p, z)]||[(qm, w) and
the result follows from the inductive hypothesis;

Case p, q ∈ B \ B+. For some n ∈ IN, n ≥ 2, pi ∈ B+ and πi ∈ 〈0, 1〉 for 1 ≤ i ≤ n,
p ≡ p1 tπ1p2 tπ2 . . . pn−1 tπn−1pn and also for some m ∈ IN,m ≥ 2, qj ∈ B+ and ρj ∈
〈0, 1〉 for 1 ≤ j ≤ m, q ≡ q1 tρ1q2 tρ2 . . . qm−1 tρm−1qm. Then pACP+ ` (p, z)]||[(q, w) =
tπi·ρj :1≤i≤n,1≤j≤m(pi, z)]||[(qj, w) and by the inductive hypothesis there are closed pBPA terms
sij for 1 ≤ i ≤ n and 1 ≤ j ≤ m such that pACP+ ` (pi, z)]||[(qj, w) = sij . The result follows
straightforwardly.

�

Theorem 4.2.5 (Elimination theorem of pACP+). Let p be a closed pACP+ term. Then there is a
closed pBPA term q such that pACP+ ` p = q.

Proof. Let p be a closed pACP+ term. The theorem is proved by case distinction on the structure of
p.

Chapter 4. Parallel composition and communication 95

Case p ≡ a, a ∈ Aδ. p is a closed pBPA term;

Case p ≡ p1 · p2. p1 and p2 are closed pACP+ terms and the inductive hypothesis is applicable on
them. Thus, there exist closed pBPA terms q1 and q2 such that pACP+ ` p1 = q1 and pACP+ `
p2 = q2. Then pACP+ ` p = p1 · p2 = q1 · q2 and q1 · q2 is a closed pBPA term;

Case p ≡ p1 + p2 or p ≡ p1 tπp2. These cases are treated analogously as the previous case;

Case p ≡ p1‖ p2. p1 and p2 are closed pACP+ terms. By the induction there are closed pBPA terms
q1 and q2 such that pACP+ ` p1 = q1 and pACP+ ` p2 = q2. By Theorem 3.2.23 there are basic
terms r1 and r2 such that pBPA ` q1 = r1 and pBPA ` q2 = r2. But then also, pACP+ ` p1 = r1
and pACP+ ` p2 = r2 and pACP+ ` p1‖ p2 = r1‖ r2 as well. From Lemma 4.2.3 follows that
there is a closed pBPA term s such that pACP+ ` r1‖ r2 = s;

Case p ≡ p1 | p2. It can be proved in a similar way like the previous case;

Case p ≡ (p1, z1)]||[(p2, z2). It can be proved in a similar way like the case where p ≡ p1‖ p2, just
instead of Lemma 4.2.3, Lemma 4.2.4 is applied;

Case p ≡ p1 ‖ p2. pACP+ ` p = p1 ‖ p2 = (p1, p1)]||[(p2, p2) and the result follows from the previous
case;

Case p ≡ ∂H(p1). p1 is a closed pACP+ term. By the induction there is a closed pBPA term q1 such
that pACP+ ` p1 = q1. By Theorem 3.2.23 there is a basic term r1 such that pBPA ` q1 = r1.
Thus, pACP+ ` p1 = r1 and pACP+ ` ∂H(p1) = ∂H(r1) as well. From Lemma 4.2.3 follows
that there is a closed pBPA term s such that pACP+ ` ∂H(r1) = s which concludes the proof.

�

4.3 Structured operational semantics of pACP+

In this section, we construct the bisimulation model of pACP+, MpACP+ . We follow the schema
and refer to definitions given in Section 3.3.1. We do not deal with the recursive specification and
projection in pACP+, so we only present the model of finite processes. Adding recursive specifications
in pACP+ and solutions of them (and thus making a model with infinite processes), can be done in a
similar way as in Chapter 3.

4.3.1 Model of pACP+ and properties of the model
The operational semantics of pACP+ is given by the term-deduction system TpACP+ = (Σ̆pACP+,

DRpACP+) with Σ̆pACP+ = (Aδ ∪ Ăδ,+, ·, tπ, ‖ , ‖ , | ,]||[, ∂H) and with the deduction rules shown in
Table 3.8 (on pg. 55) and 3.10 (on pg. 56) (the deduction rules of pBPA), the rules in Table 4.5 (rules
for probabilistic transitions for the new operators) as well as the deduction rules for atomic transitions
in Table 4.6 (basically the deduction rules of ACP). With PRA replaced by pACP+, the items 1, 3-5
in Definition 3.3.2 (on pg. 49) together with the added ones in Definition 4.3.1 (according to the 7th
item in Definition 3.3.2) define the set of static processes SP(pACP+); the items 1-3 in Definition
3.3.3 (on pg. 49) together with 5.1-5.3 in Definition 4.3.2 define the set of trivial static processes
D(pACP+); the items 1-3 in Definition 3.3.4 (on pg. 50) together with 5.1-5.3 in Definition 4.3.3
define the set of dynamic processes, DP(pACP+); the PDF function µ on PT(pACP+) is defined by

96 4.3. Operational semantics

Definition 4.3.4 and the probabilistic bisimulation relation on PT(pACP+) is defined by Definition
3.3.11 (on pg. 53) with PRA is replaced by pACP+.

Definition 4.3.1. (Continuation of Definition 3.3.2)

7.1. if s, t ∈ SP(pACP+), then s‖ t, s | t, s ‖ t ∈ SP(pACP+);

7.2. if s, t, z, w ∈ SP(pACP+), then (s, z)]||[(t, w) ∈ SP(pACP+);

7.3. if s ∈ SP(pACP+), then ∂H(s) ∈ SP(pACP+).

Definition 4.3.2. (Continuation of Definition 3.3.3)

5.1. if s, t ∈ D(pACP+), then s | t ∈ D(pACP+);

5.2. if s ∈ D(pACP+), t ∈ SP(pACP+), then s‖ t ∈ D(pACP+);

5.3. if s ∈ D(pACP+), then ∂H(s) ∈ D(pACP+).

Definition 4.3.3. (Continuation of Definition 3.3.4)

5.1. ϕ(s‖ t) = ϕ(s)‖ t;

5.2. ϕ(s | t) = ϕ(s) |ϕ(t);

5.3. ϕ(∂H(s)) = ∂H(ϕ(s)).

x ; x′, y ; y′

x ‖ y ; x′‖ y + y′‖ x+ x′ | y′
x ; x′, y ; y′

(x, z)]||[(y, w) ; x′‖ w + y′‖ z + x′ | y′

x ; x′

x‖ y ; x′‖ y
x ; x′, y ; y′

x | y ; x′ | y′
x ; x′

∂H(x) ; ∂H(x′)

Table 4.5: Probabilistic transitions of additional operators of pACP+.

Definition 4.3.4. (PDF for pACP+) A probability distribution function on PT(pACP+) is defined by
the equalities in Table 3.6, 3.7 and 4.7.

Observe that the deduction rules for action transitions of the parallel composition operator are not
involved in this term-deduction system. As it will be proved later (Proposition 4.3.8) static process
can perform a probabilistic step and it reaches a dynamic process which can proceed by an atomic
transition. Therefore, a static process can be a parallel composition of two other static processes. After
performing a probabilistic transition the dynamic process reached is no longer a parallel composition.
If we look at all the rules for probabilistic transitions we can observe that a dynamic process that is a
parallel composition of two processes can never be obtained.

Chapter 4. Parallel composition and communication 97

x
a→ x′

x‖ y a→ x′ ‖ y
x

a→ √

x‖ y a→ y

x
a→ x′, y

b→ y′, γ(a, b) = c

x | y c→ x′ ‖ y′

x
a→ x′, y

b→√, γ(a, b) = c

x | y c→ x′, y |x c→ x′
x

a→ √, y b→√, γ(a, b) = c

x | y c→ √

x
a→ x′, a /∈ H

∂H(x)
a→ ∂H(x′)

x
a→√, a /∈ H
∂H(x)

a→√

Table 4.6: Action transitions of pACP+.

µ(x ‖ y, x′‖ y + y′‖ x + x′ | y′) = µ(x, x′) · µ(y, y′)
µ(x‖ y, x′‖ y) = µ(x, x′)
µ(x | y, x′ | y′) = µ(x, x′) · µ(y, y′)
µ((x, z)]||[(y, w), x′‖ w + y′‖ q + x′ | y′) = µ(x, x′) · µ(y, y′)
µ(∂H(x), ∂H(x′)) = µ(x, x′)
µ(x, u) = 0 otherwise

Table 4.7: Equalities that define PDFs for pACP+ (part 3 - parallel composition)

Many properties given and proved valid in pBPA need to be extended in pACP+. In their proofs
in Chapter 3, the axioms of pBPA and the deduction rules of TpBPA were used. Since no axiom or
deduction rule for the operators of pBPA is added to pACP+ and TpACP+ , it is clear that these proofs
remain valid in pACP+ and TpACP+ , respectively. If the proof of one property given in Chapter 3 is
inductive, then it is sufficient to continue the induction for the added operators in pACP+.

Proposition 4.3.5. µ is well-defined on PT(pACP+).

Proof. We give the continuation of the proof of Proposition 3.3.18.

Case SP(pACP+) processes. Assume that t ∈ SP(pACP+).

Case t ≡ s‖ r. µ(s‖ r, u) =

{

µ(s, v), if u ≡ v‖ r
0, otherwise

. By inductive hypothesis µ(s, v) is

defined and so, µ(s‖ r, u) is defined as well.

Case t ≡ s | r. µ(s | r, u) =

{

µ(s, v) · µ(r, w), if u ≡ v |w
0, otherwise

. µ(s, v) and µ(r, w) are de-

fined by the inductive hypothesis. Hence, so µ(s | r, u) is defined as well.

Case t ≡ s ‖ r. µ(s ‖ r, u) =

{

µ(s, v) · µ(r, w), if u ≡ v‖ r + w‖ s+ v |w
0, otherwise

. µ(s, v) and

µ(r, w) are defined by the inductive hypothesis. Therefore, µ(s ‖ r, u) is defined as well.

98 4.3. Operational semantics

Case t ≡ (s, z)]||[(r, w). µ((s, z)]||[(r, w), u) =

{

µ(s, x) · µ(r, y), if u ≡ x‖ w + y‖ z + x | y
0, otherwise

µ(s, x) and µ(r, y) are defined by the inductive hypothesis, so µ((s, z)]||[(r, w), u) is
defined as well.

Case t ≡ ∂H(s). µ(∂H(s), u) =

{

µ(s, v), if u ≡ ∂H(v)
0, otherwise

. µ(s, v) is defined by the in-

ductive hypothesis, so µ(∂H(s), u) is defined as well.

Case DP(pACP+) processes. Assume that t ∈ DP(pACP+). We will prove that µ(t, u) = 0.

Case t ≡ s‖ r. µ(s‖ r, u) =

{

µ(s, v), if u ≡ v‖ r
0, otherwise

. µ(s, v) = 0 by the inductive hy-

pothesis and µ(s‖ r, u) = 0 as well.

Case t ≡ s | r. µ(s | r, u) =

{

µ(s, v) · µ(r, w), if u ≡ v |w
0, otherwise

. By the inductive hypothesis

µ(s, v) = 0 and µ(r, w) = 0. Then, µ(s | r, u) = 0 as well.

Case t ≡ ∂H(s). µ(∂H(s), u) =

{

µ(s, v), if u ≡ ∂H(v)
0, otherwise

. By the inductive hypothesis

µ(s, v) = 0. Then µ(∂H(s), u) = 0 as well.
�

Proposition 4.3.6. The cPDF µ∗ is well-defined on PT(pACP+).

Proof. Continuation of the proof of Proposition 3.3.20.

Case t ≡ s‖ r.
µ(s‖ r,M) =

∑

x∈M

µ(s‖ r, x) =
∑

x:x∈M&∃x′:x≡x′‖ r

µ(s‖ r, x) =
∑

x′:x′‖ r∈M

µ(s, x′)

= µ(s, {x′ : x′‖ r ∈M}) ∈ [0, 1] by the inductive hypothesis.

Case t ≡ s | r.
µ(s | r,M) =

∑

x∈M

µ(s | r, x) =
∑

x:x∈M&∃x′,x′′:x≡x′ |x′′

µ(s | r, x)

=
∑

x′,x′′:x′ |x′′∈M

µ(s, x′) · µ(r, x′′)

≤ µ(s, {x′ : ∃x′′ : x′ |x′′ ∈ M}) · µ(r, {x′′ : ∃x′ : x′ |x′′ ∈M}) ∈ [0, 1]
by the inductive hypothesis.

Case t ≡ s ‖ r.
µ(s ‖ r,M) =

∑

x∈M

µ(s ‖ r, x) =
∑

x:x∈M&∃x′,x′′:x≡x′‖ r+x′′‖ s+x′ |x′′

µ(s ‖ r, x)

=
∑

x′,x′′:x′‖ r+x′′‖ s+x′ |x′′∈M

µ(s, x′) · µ(r, x′′)

≤ µ(s, {x′ : ∃x′′ : x′‖ r + x′′‖ s+ x′ |x′′ ∈M})
·µ(r, {x′′ : ∃x′ : x′‖ r + x′′‖ s+ x′ | x′′ ∈M}) ∈ [0, 1]

by the inductive hypothesis.

Chapter 4. Parallel composition and communication 99

Case t ≡ (s, z)]||[(r, w).
µ((s, z)]||[(r, w),M) =

∑

x∈M

µ((s, z)]||[(r, w), x)

=
∑

x:x∈M&∃x′,x′′:x≡x′‖ w+x′′‖ z+x′ |x′′

µ((s, z)]||[(r, w), x)

=
∑

x′,x′′:x′‖ w+x′′‖ z+x′ | x′′∈M

µ(s, x′) · µ(r, x′′)

≤ µ(s, {x′ : ∃x′′ : x′‖ w + x′′‖ z + x′ | x′′ ∈M})
·µ(r, {x′′ : ∃x′ : x′‖ w + x′′‖ z + x′ |x′′ ∈M}) ∈ [0, 1]

by the inductive hypothesis.

Case t ≡ ∂H(s).
µ(∂H(s),M) =

∑

x∈M

µ(∂H(s), x) =
∑

x:x∈M&∃x′:x≡∂H(x′)

µ(∂H(s), x)

=
∑

x′:∂H(x′)∈M

µ(s, x′) = µ(s, {x′ : ∂H(x′) ∈M}) ∈ [0, 1]

by the inductive hypothesis.
�

Proposition 4.3.7. Let be p, q, z, w ∈ SP(pACP+) and K,L, P,Q ⊆ PT(pACP+). We denote:
K P ‖Q L = {k‖ q + l‖ p + k | l : k ∈ K, l ∈ L, p ∈ P, q ∈ Q} and if P or Q are singletons we
omit the brackets. Then:

i. The equalities given in Proposition 3.3.21 are valid when pBPA + PR is replaced by pACP+;

ii. µ(p ‖ q,K p ‖ q L) = µ(p,K) · µ(q, L);

iii. µ((p, z)]||[(q, w), K z ‖ w L) = µ(p,K) · µ(q, L);

iv. µ(p‖ q,K‖ L) = µ(p,K) if q ∈ L, and µ(p‖ q,K‖ L) = 0 otherwise.

v. µ(p | q,K |L) = µ(p,K) · µ(q, L);

vi. µ(∂H(p), ∂H(K)) = µ(p,K).

Proof.

ii. µ(p ‖ q,K p ‖ q L) = µ(p ‖ q, ⋃
k∈K

⋃

l∈L

{k‖ q + l‖ p+ k | l}) =
∑

k∈K

∑

l∈L

µ(p ‖ q, k‖ q + l‖ p+ k | l)

=
∑

k∈K

∑

l∈L

µ(p, k) · µ(q, l) =
(

∑

k∈K

µ(p, k)
)(

∑

l∈L

µ(q, l)
)

= µ(p,K) · µ(q, L).

iii. In a similar way as in the case ii.

iv. If q ∈ L then µ(p‖ q,K‖ L) = µ(p‖ q, ⋃
k∈K

{k‖ q}) =
∑

k∈K

µ(p‖ q, k‖ q) =
∑

k∈K

µ(p, k) =

µ(p,K).

v. µ(p | q,K |L) = µ(p | q, ⋃
k∈K

⋃

l∈L

{k | l}) =
∑

k∈K

∑

l∈L

µ(p | q, k | l) =
∑

k∈K

∑

l∈L

µ(p, k) · µ(q, l)

=
(

∑

k∈K

µ(p, k)
)(

∑

l∈L

µ(q, l)
)

= µ(p,K) · µ(q, L).

100 4.3. Operational semantics

vi. µ(∂H(p), ∂H(K)) = µ(∂H(p),
⋃

k∈K

{∂H(k)}) =
∑

k∈K

µ(∂H(p), ∂H(k))

=
∑

k∈K

µ(p, k) = µ(p,K). �

Alternation of probabilistic transitions and action transitions in the model of pACP+ is confirmed
by Proposition 4.3.8 and Proposition 4.3.9 given below.

Proposition 4.3.8. If p ∈ SP(pACP+) and p ; u, then u ∈ DP(pACP+).

Proof. The proof is a continuation of the inductive proof of Proposition 3.3.22. Let us assume that
p ; u.

Case p ≡ q‖ r. From the assumption it follows that q ; v and u ≡ v‖ r. From the inductive
hypothesis v ∈ DP(pACP+) and u ∈ DP(pACP+) as well;

Case p ≡ q | r. There are v and w such that tq ; v, r ; w and u ≡ v |w. From the inductive
hypothesis v ∈ DP(pACP+) and w ∈ DP(pACP+) from which u ∈ DP(pACP+);

Case p ≡ q ‖ r. There are v and w such that q ; v, r ; w and u ≡ v‖ r + w‖ r + v |w. From
the inductive hypothesis v ∈ DP(pACP+) and w ∈ DP(pACP+) and also v‖ r, w‖ q, v |w ∈
DP(pACP+). Hence, u ∈ DP(pACP+);

Case p ≡ (q, z)]||[(r, s). From the assumption we have that q ; v, r ; w and u ≡ v‖ s + w‖ z +
v |w. From the inductive hypothesis v ∈ DP(pACP+) and w ∈ DP(pACP+). Therefore,
u ∈ DP(pACP+) as well;

Case p ≡ ∂H(q). Thus, q ; v and u ≡ ∂H(v). From the inductive hypothesis v ∈ DP(pACP+) and
u ∈ DP(pACP+) as well.

�

Proposition 4.3.9. If x is a D(pACP+) process and x a→ p for some a ∈ A, then p ∈ SP(pACP+).

Proof. It is easy to prove by induction on the structure of DP(pACP+) processes. �

We can prove that the alternative definition of probabilistic bisimulation given on page 63 is
equivalent to probabilistic bisimulation (Definition 3.3.11) on PT(pACP+) by proving that Proposi-
tion 3.3.28 is valid for PT(pACP+) processes. Then, this can be used in the proofs of the Congruence
and Soundness theorem. For these reasons we give several prerequisites and obtain the result straight-
forwardly (Corollary 4.3.14).

Proposition 4.3.10. If u is a D(pACP+) process, then the only possible probabilistic transition of u
is u ; ŭ.

Proof. We give a continuation of the inductive proof of Proposition 3.3.24.

Case u ≡ v‖ t. By the inductive hypothesis v ; v̆ is the only possible probabilistic transition of v.
Then u ; v̆‖ t and this is the only possible probabilistic transition of u;

Case u ≡ v |w. By the inductive hypothesis v ; v̆ and w ; w̆ are the only possible probabilis-
tic transitions of v and w, respectively. Therefore, u ; v̆ | w̆ and this is the only possible
probabilistic transition of u;

Chapter 4. Parallel composition and communication 101

Case u ≡ ∂H(v). From the inductive hypothesis v ; v̆ is the only possible probabilistic transition of
v. Then u ; ∂H(v̆) and this is the only possible probabilistic transition of u.

�

Proposition 4.3.11. If u is a D(pACP+) process, then µ(u, ŭ) = 1. �

Proposition 4.3.12. Let be p ∈ PT(pACP+). Then µ(p, x) > 0 iff p ; x.

Proof. We give only the part of the proof concerning the ‖ operator. The inductive proof for the other
operators can easily be derived.

Assume that p ∈ PT(pACP+) and p ≡ q ‖ r.
(⇒) Let be µ(p, x) > 0. From the definition of the probability distribution function and from the

assumption µ(p, x) > 0 it follows that x ≡ v‖ r + w‖ q + v |w and µ(q, v) · µ(q, w) = µ(p, x) > 0.
This implies µ(q, v) > 0 and µ(r, w) > 0. From the inductive hypothesis it follows that q ; v and
r ; w. Finally, from the deduction rules we conclude that p ; x.

(⇐) Let be p ; x. From the assumption p ≡ q ‖ r we obtain that q ; v and r ; w and
x ≡ v‖ r + ‖ q + v |w. From the inductive hypothesis it follows that µ(q, v) > 0 and µ(r, w) > 0.
Since µ(p, x) = µ(q, v) · µ(r, w), µ(p, x) > 0 as well. �

Proposition 4.3.13. If p ∈ SP(pACP+) then µ(p,PT(pACP+)) = 1.

Proof. We just give the continuation of the inductive proof of Proposition 3.3.30.

Case p ≡ q‖ r. From Proposition 4.3.7iv. and the inductive hypothesis we obtain:

µ(p,DP(pACP+)) = µ(q‖ r,DP(pACP+)) = µ(q‖ r,DP(pACP+)‖ r)
= µ(q,DP(pACP+)) = 1;

Case p ≡ q | r. From Proposition 4.3.7v. and the inductive hypothesis we obtain:

µ(p,DP(pACP+)) = µ(q | r,DP(pACP+)) = µ(q | r,DP(pACP+) |DP(pACP+))
= µ(q,DP(pACP+)) · µ(r,DP(pACP+)) = 1 · 1 = 1;

Case p ≡ q ‖ r. Using Proposition 4.3.7ii. and the inductive hypothesis we obtain

µ(p,DP(pACP+)) = µ(q ‖ r,DP(pACP+)) = µ(q ‖ r,DP(pACP+)q ‖ rDP(pACP+))
= µ(q,DP(pACP+)) · µ(r,DP(pACP+)) = 1 · 1 = 1;

Case p ≡ (q, z)]||[(r, w). Using Proposition 4.3.7iii. and the inductive hypothesis we obtain

µ(p,DP(pACP+)) = µ((q, z)]||[(r, w),DP(pACP+))
= µ((q, z)]||[(r, w),DP(pACP+)z ‖ wDP(pACP+))
= µ(q,DP(pACP+)) · µ(r,DP(pACP+)) = 1 · 1 = 1;

Case p ≡ ∂H(q). Applying Proposition 4.3.7vi. and the inductive hypothesis we obtain

µ(p,DP(pACP+)) = µ(∂H(q), ∂H(DP(pACP+)) = µ(q,DP(pACP+)) = 1.
�

Corollary 4.3.14.

i. Let p ∈ PT(pACP+) and M ⊆ PT(pACP+). Then µ(p,M) > 0 iff ∃x ∈M : p ; x;

ii. Proposition 3.3.32 is valid in PT(pACP+)

102 4.3. Operational semantics

�

Theorem 4.3.15 (Congruence theorem of pACP+). ↔ is a congruence relation on PT(pACP+) with
respect to the +, ·, tπ , ‖ , | , ‖ ,]||[and ∂H operators.

Proof. The part of the proof for the operators of pBPA is the same as the proof of the Congruence
theorem of pBPA (Theorem 3.3.36) if pBPA is replaced by pACP+. Here we give the rest of the proof
which concerns the operators: ‖ , ‖ , | ,]||[and ∂H .

Parallel composition. Let x, y, z and w be PT(pACP+) processes such that x↔ y and z↔ w. So,
there exist probabilistic bisimulations R1 and R2 such that (x, y) ∈ R1 and (z, w) ∈ R2. We define a
relation R in the following way:

R = Eq
(

α ∪ β ∪ R1 ∪R2

)

,

where
α = {(p ‖ q, s ‖ t) : p, q, s, t ∈ SP(pACP+), (p, s) ∈ R1, (q, t) ∈ R2},
β = {(u‖ q + v‖ p+ u | v, l‖ t + k‖ s+ l | k) : p, q, s, t ∈ SP(pACP+),

u, v, l, k ∈ DP(pACP+),
(p, s), (u, l) ∈ R1, (q, t), (v, k) ∈ R2}.

We can make the following observations:

M1: α and β are equivalence relations; α, R1 and R2 contain pairs of static processes relevant to R.
β equivalence classes of SP(pACP+) processes are singletons;

M2: if (p ‖ q, s ‖ t) ∈ α and K ∈ DP(pACP+)/β, then p ‖ q ; K iff s ‖ t ; K;

M3: if p ‖ q ; K for K ∈ DP(pACP+)/β, then K = [u‖ q + v‖ p+ u | v]β for some u, v such that
p ; u and q ; v. Moreover, from the definition of β we have that K = [u]R1

[p]R1 ‖ [q]R2 [v]R2;

M4: since R1, R2 and β are all subsets of R and they are equivalence relations themselves, if M ∈
DP(pACP+)/R, then M =

⋃

i1∈I1

M1
i1

, M =
⋃

i2∈I2

M2
i2

and M =
⋃

j∈J

Kj for some non-empty

index sets I1, I2 and J and for some equivalence classes M 1
i1

(i1 ∈ I1), M2
i2

(i2 ∈ I2) and
Kj (j ∈ J) of R1, R2 and β, respectively.

Now suppose that (r, r1) ∈ R for some r, r1 ∈ SP(pACP+) and M ∈ DP(pACP+)/R. Then

1. If (r, r1) ∈ Rk, k = 1, 2, then the result can be proved easily by use of M4 and Proposition
3.3.9 ii. (see the proof of Theorem 3.3.36 pg. 63);

2. If (r, r1) ∈ α, then r ≡ p ‖ q and r1 ≡ s ‖ t for some p, q, s, t ∈ SP(pACP+) such that
(p, s) ∈ R1 and (q, t) ∈ R2. According to M3 and M4, Kj = [uj]R1

[p]R1 ‖ [q]R2 [vj]R2 and
p ; uj and q ; vj . From Proposition 4.3.7ii. it follows that

µ(p ‖ q,Kj) = µ(p ‖ q, [uj]R1
[p]R1 ‖ [q]R2 [vj]R2) = µ(p, [uj]R1) · µ(q, [vj]R2)

= µ(s, [uj]R1) · µ(t, [vj]R2) = µ(s ‖ t, [uj]R1
[p]R1 ‖ [q]R2 [vj]R2) = µ(s ‖ t,Kj).

Using Proposition 3.3.9 ii. we can easily prove that µ(p ‖ q,M) = µ(s ‖ t,M).

Merge with memory. Let x1, x2, x3, x4, y1, y2, y3 and y4 be PT(pACP+) processes such that
xi ↔ yi, i = 1, 2, 3, 4. So, there exist probabilistic bisimulations R1, R2, R3 and R4 such that
(xi, yi) ∈ Ri, for i = 1, 2, 3, 4. We define a relation R in the following way:

R = Eq
(

α ∪ β ∪R14 ∪ R23 ∪R12 ∪R1 ∪R2 ∪ R3 ∪R4

)

,

Chapter 4. Parallel composition and communication 103

where
α = {((p1, z1)]||[(q1, w1), (p2, z2)]||[(q2, w2)) : p1, q1, z1, w1, p2, q2, z2, w2 ∈ SP(pACP+),

(p1, p2) ∈ R1, (q1, q2) ∈ R2,
(z1, z2) ∈ R3, (w1, w2) ∈ R4},

β = {(u1‖ w1 + v1‖ z1 + u1 | v1, u2‖ w2 + v2‖ z2 + u2 | v2) : z1, z2, w1, w2 ∈ SP(pACP+),
u1, v1, u2, v2 ∈ DP(pACP+),
(u1, u2) ∈ R1, (v1, v2) ∈ R2,
(z1, z2) ∈ R3, (w1, w2) ∈ R4},

R14, R12 and R23 are defined in the same way like the relation R in the proof for parallel compo-
sition, except that the relation R1 and R2 occurring there are replaced by: R1 and R4 for R14, R1 and
R2 for R12 and R2 and R3 for R23, respectively.
Let us note that:

MM1: α, β, R14, R12 and R23 are equivalence relations; α, R14, R12 and R23 contain pairs of static
processes relevant to R;

MM2: If ((p1, z1)]||[(q1, w1), (p2, z2)]||[(q2, w2)) ∈ α and K ∈ DP(pACP+)/β, then
(p1, z1)]||[(q1, w1) ; K iff (p2, z2)]||[(q2, w2) ; K;

MM3: If (p1, z1)]||[(q1, w1) ; K for K ∈ DP(pACP+)/β, then K = [u‖ w1 + v‖ z1 + u | v]β
for some u, v such that p ; u and q ; v. Moreover, from the definition of β we have that
K = [u]R1

[z1]R3 ‖ [w1]R4 [v]R2 ;

MM4: since R14, R12, R23 and β are all subsets of R and they are equivalence relations themselves,
if M ∈ DP(pACP+)/R, then M =

⋃

i∈I

M1
i , M =

⋃

n∈N

M2
n, M =

⋃

l∈L

M3
l and M =

⋃

j∈J

Kj

for some non-empty index sets I , N , L and J and for some equivalence classes M 1
i (i ∈ I),

M2
n (n ∈ N), M3

l (l ∈ L) and Kj (j ∈ J) of R14, R12, R23 and β, respectively.

Now suppose that (r1, r2) ∈ R for some r1, r2 ∈ SP(pACP+) and M ∈ DP(pACP+)/R. Then

1. If (r1, r2) ∈ R14 or (r1, r2) ∈ R12 or (r1, r2) ∈ R23 then the result follows from MM4 and
Proposition 3.3.9ii.;

2. If (r1, r2) ∈ α then r ≡ (p1, z1)]||[(q1, w1) and r1 ≡ (p2, z2)]||[(q2, w2) for some p1, p2, q1, q2, z1,
z2, w1, w2 ∈ SP(pACP+) such that (p1, p2) ∈ R1, (q1, q2) ∈ R2, (z1, z2) ∈ R3 and (w1, w2) ∈
R4. According to MM3 and MM4, Kj = [uj]R1

[z1]R3 ‖ [w1]R4 [vj]R2 and p1 ; uj and q1 ; vj .
Then from Proposition 4.3.7 iii. we obtain that

µ((p1, z1)]||[(q1, w1), Kj) = µ((p1, z1)]||[(q1, w1), [uj]R1
[z1]R3 ‖ [w1]R4 [vj]R2)

= µ(p1, [uj]R1) · µ(q1, [vj]R2)
= µ(p2, [uj]R1) · µ(q2, [vj]R2)
= µ((p2, z2)]||[(q2, w2), [uj]R1

[z1]R3 ‖ [w1]R4 [vj]R2)
= µ((p2, z2)]||[(q2, w2), Kj).

From Proposition 3.3.9 ii. we can easily prove that µ((p1, z1)]||[(q1, w1),M) =
µ((p2, z2)]||[(q2, w2),M).

Left merge. Let x, y, z and w be PT(pACP+) processes such that x↔ y and z↔ w. So, there exist
probabilistic bisimulations R1 and R2 such that (x, y) ∈ R1 and (z, w) ∈ R2. We define a relation R
in the following way:

R = Eq(α′ ∪ β ′ ∪ α ∪ β ∪ R1 ∪ R2),

104 4.3. Operational semantics

where
α′ = {(p‖ q, s‖ t) : p, q, s, t ∈ SP(pACP+), (p, s) ∈ R1, (q, t) ∈ R2},
β ′ = {(u‖ q, v‖ t) : q, t ∈ SP(pACP+), u, v ∈ DP(pACP+), (u, v) ∈ R1, (q, t) ∈ R2},

and α and β are the relations defined in the proof of parallel composition.
From the definitions of the relations we can observe that:

LM1: α′ and β ′ are equivalence relations; α′, α, R1 and R2 contain pairs of static processes relevant
to R;

LM2: if (p‖ q, s‖ t) ∈ α′ and K ∈ DP(pACP+)/β ′, then p‖ q ; K iff s‖ t ; K;

LM3: if p‖ q ; K for K ∈ DP(pACP+)/β ′, then K = [u‖ q]β′ for some u such that p ; u.
Moreover, from the definition of β ′ we have that K = [u]R1‖ [q]R2 ;

LM4: since R1, R2, β and β ′ are all subsets of R and they are equivalence relations themselves, if
M ∈ DP(pACP+)/R, then M =

⋃

i1∈I1

M1
i1 , M =

⋃

i2∈I2

M2
i2 , M =

⋃

j∈J

Kj and M =
⋃

n∈N

Mn for

some non-empty index sets I1, I2, J and N and for some equivalence classes M 1
i1

(i1 ∈ I1),
M2

i2
(i2 ∈ I2), Kj (j ∈ J) and Mn (n ∈ N) of R1, R2 β

′ and β, respectively.

Now suppose that (r, r1) ∈ R for some r, r1 ∈ SP(pACP+) and M ∈ DP(pACP+)/R. Then

1. If (r, r1) ∈ Rk, k = 1, 2 then the result follows from LM4 and Proposition 3.3.9ii.;

2. If (r, r1) ∈ α the proof is given in the part for the ‖ operator;

3. If (r, r1) ∈ α′ then r ≡ p‖ q and r1 ≡ s‖ t for some p, q, s, t ∈ SP(pACP+) such that (p, s) ∈
R1 and (q, t) ∈ R2. According to LM3 and LM4, Kj = [uj]R1‖ [q]R2 and p ; uj. Then from
Proposition 4.3.7 iv. we obtain that

µ(p‖ q,Kj) = µ(p ‖ q, [uj]R1‖ [q]R2) = µ(p, [uj]R1) = µ(s, [uj]R1))
= µ(s‖ t, [uj]R1‖ [q]R2) = µ(s‖ t,Kj).

From Proposition 3.3.9 ii. we can easily prove that µ(p‖ q,M) = µ(s‖ t,M).

Communication merge. Let x, y, z and w be PT(pACP+) processes such that x↔ y and z ↔ w.
So, there exist probabilistic bisimulations R1 and R2 such that (x, y) ∈ R1 and (z, w) ∈ R2. We
define a relation R in the following way:

R = Eq(α′ ∪ β ′ ∪ α ∪ β ∪ R1 ∪ R2),

where
α′ = {(p | q, s | t) : p, q, s, t ∈ SP(pACP+), (p, s) ∈ R1, (q, t) ∈ R2},
β ′ = {(u | v, l | k) : u, v, l, k ∈ DP(pACP+), (u, l) ∈ R1, (v, k) ∈ R2},

and α and β are the relations defined in the proof of parallel composition operator.
Observe that:

CM1: α′ and β ′ are equivalence relations; α′, α, R1 and R2 contain pairs of static processes relevant
to R;

CM2: if (p | q, s | t) ∈ α′ and K ∈ DP(pACP+)/β ′, then p | q ; K iff s | t ; K;

CM3: if p | q ; K for K ∈ DP(pACP+)/β ′, then K = [u | v]β′ for some u, v such that p ; u and
q ; v. Moreover, from the definition of β ′ we have that K = [u]R1 | [v]R2 ;

Chapter 4. Parallel composition and communication 105

CM4: since R1, R2, β and β ′ are all subsets of R and they are equivalence relations themselves, if
M ∈ DP(pACP+)/R, then M =

⋃

i1∈I1

M1
i1

, M =
⋃

i2∈I2

M2
i2

, M =
⋃

j∈J

Kj and M =
⋃

n∈N

Mn for

some non-empty index sets I1, I2, J and N and for some equivalence classes M 1
i1

(i1 ∈ I1),
M2

i2 (i2 ∈ I2), Kj (j ∈ J) and Mn (n ∈ N) of R1, R2, β ′ and β, respectively.

Now suppose that (r, r1) ∈ R for some r, r1 ∈ SP(pACP+) and M ∈ DP(pACP+)/R. Then

1. If (r, r1) ∈ Rk, k = 1, 2 then the result follows from CM4 and Proposition 3.3.9ii.;

2. If (r, r1) ∈ α the proof is given in the part for the ‖ operator;

3. If (r, r1) ∈ α′ then r ≡ p | q and r1 ≡ s | t for some p, q, s, t ∈ SP(pACP+) such that (p, s) ∈ R1

and (q, t) ∈ R2. According to CM3 and CM4, Kj = [uj]R1 | [vj]R2 and p ; uj and q ; vj .
Then from Proposition 4.3.7 v. we obtain that

µ(p | q,Kj) = µ(p | q, [uj]R1 | [vj]R2) = µ(p, [uj]R1) · µ(q, [vj]R2)
= µ(s, [uj]R1) · µ(t, [vj]R2) =µ(s | t, [uj]R1 | [vj]R2) = µ(s | t,Kj).

From Proposition 3.3.9 v. we can easily prove that µ(p | q,M) = µ(s | t,M).

Encapsulation. Let x and y be PT(pACP+) processes such that x↔ y. So, there exists a proba-
bilistic bisimulation R1 such that (x, y) ∈ R1. We define a relation R in the following way:

R = Eq(α ∪ β ∪R1),

where
α = {(∂H(p), ∂H(q)) : p, q ∈ SP(pACP+), (p, q) ∈ R1},
β = {(∂H(u), ∂H(v)) : u, v ∈ DP(pACP+), (u, v) ∈ R1}.

Let us note that:

E1: α and β are equivalence relations; α and R1 contain pairs of static processes relevant to R;

E2: if (∂H(p), ∂H(q)) ∈ α and K ∈ DP(pACP+)/β, then ∂H(p) ; K iff ∂H(q) ; K;

E3: if ∂H(p) ; K for K ∈ DP(pACP+)/β, then K = [∂H(u)]β for some u such that p ; u.
Moreover, from the definition of β we have that K = ∂H([u]R1);

E4: since R1 and β are all subsets of R and they are equivalence relations themselves, if M ∈
DP(pACP+)/R, then M =

⋃

i∈I

Mi and M =
⋃

j∈J

Kj for some non-empty index sets I and J and

for some equivalence classes Mi (i ∈ I) and Kj (j ∈ J) of R1 and β, respectively.

Now suppose that (r, r1) ∈ R for some r, r1 ∈ SP(pACP+) and M ∈ DP(pACP+)/R. Then

1. If (r, r1) ∈ R1 then the result follows from E4 and Proposition 3.3.9ii.;

2. If (r, r1) ∈ α then r ≡ ∂H(p) and r1 ≡ ∂H(q) for some p, q ∈ SP(pACP+) such that (p, q) ∈
R1. According to E3 and E4, Kj = ∂H([uj]R1) and p ; uj. Then from Proposition 4.3.7vi.
we obtain that
µ(∂H(p), Kj) = µ(∂H(p), ∂H([uj]R1)) = µ(p, [uj]R1) = µ(q, [uj]R1)

= µ(∂H(q), ∂H([uj]R1)) = µ(∂H(q), Kj).
From Proposition 3.3.9ii. it follows that µ(∂H(p),M) = µ(∂H(q),M).

�

106 4.3. Operational semantics

The most tricky part in the proof of the Soundness theorem is the part about the conditional
axioms: PrMM4, PrCM4 and PrCM5. First of all we should analyze the condition(s) of these
axioms which in all cases has the form p = p + p. And we also need to find a way to use it as an
assumption to prove soundness of the equation occurring on the right-hand side of the conditional
axiom. Recall that p↔ p + p means that process p can reach only a single equivalence class doing
probabilistic transitions. In that sense it behaves like a D(pACP+) process. On the syntactic level we
have proved the idempotency law for D(pACP+) terms (see Proposition 3.2.17 on pg. 43 which can
easily be extended for pACP+). It is very easy to prove this property on the semantical level (Lemma
4.3.16). The main prerequisite for the soundness proof is stated in Lemma 4.3.17. It expresses exactly
what we have claimed about a process that satisfy relation p↔ p+p - by every probabilistic transition
it reaches bisimilar processes.

Lemma 4.3.16.

i. If x ∈ D(pACP+) then x↔ x + x.

ii. If x, y, z ∈ D(pACP+) then z↔ x + y implies z↔ x+ z (See Lemma 3.3.57). �

Lemma 4.3.17. (Towards Soundness of pACP+)

i. Let x be an SP(pACP+) process such that x ; x1, x ; x2, . . . , x ; xn, n ≥ 1, are all possible
probabilistic transitions of x and for each i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n, if i 6= j then xi ↔/ xj . Then
there exists an m, 1 ≤ m ≤ n, such that x+x ; xm +xm is the only possible probabilistic transition
of x+ x to the equivalence class [xm + xm]↔ .

ii. Let x be an SP(pACP+) process such that x ↔ x + x. Then if x ; x′ and x ; x′′ for some
x′, x′′ ∈ DP(pACP+), then x′↔ x′′.

Proof.

i. By the assumption x ; x1, x ; x2, . . . , x ; xn are all possible probabilistic transitions of x. It
implies that x + x ; xi + xj for i, j ∈ {1, . . . , n} are all possible probabilistic transitions of x + x.
We need to prove that

∃m : ∀i, j : i 6= m ∨ j 6= m⇒ xi + xj↔/ xm + xm.

On the set {x1, . . . , xn} we define the following partial order:

xi← xk ⇔ ∃xj : xi + xj↔ xk + xk.

Having that ∀k : xk +xk↔ xk (Lemma 4.3.16 i.) we can reformulate the previous definition into:

xi← xk ⇔ ∃xj : xi + xj↔ xk. (4.1)

← is a partial order because it is:

reflexive xk← xk since xk + xk↔ xk;

asymmetric Let be xi ← xk and xk ← xi. From the definition of ← we have that there are ij, kj

such that xi +xij ↔ xk and xk +xkj
↔ xi. Then from Lemma 4.3.16ii. we obtain xi +xk↔ xk

and xk + xi↔ xi and also xi↔ xk. From the assumption that if j 6= l then xj ↔/ xl we obtain
xi ≡ xk;

Chapter 4. Parallel composition and communication 107

transitive Let be xi← xj and xj ← xk. From the definition of ← we have that there are ij, jk such
that xi + xij ↔ xj and xj + xjk

↔ xk. It implies that xi + xij + xjk
↔ xj + xjk

↔ xk. From
Lemma 4.3.16ii. it follows that xi + xk↔ xk and also xi← xk.

Thus we have that ← is a partial order on the finite set {x1, . . . , xn}. Then, there is a minimal
element, that is:

∃xm : ∀xi : xi← xm ⇒ xm ≡ xi.

Moreover if there is a j such that xm +xj↔ xm, then we obtain xj← xm (from the definition of ←)
and also xj ≡ xm (since xm is a minimal element). Thus we have obtained that

∃xm : ∀xi, xj : xi 6≡ xm ∨ xj 6≡ xm ⇒ xi + xj↔/ xm

which says that the only possible process in {xi + xj : i, j ∈ {1, . . . , n}} bisimilar to xm is xm + xm.
This leads to the result that x+ x ; xm + xm is the only possible probabilistic transition of x+ x to
equivalence class [xm + xm]↔ .

ii. Without loss of generality we can suppose that x is a process such that x does at most one proba-
bilistic transition to an equivalence class. From i. it follows that exists a process y such that x ; y,
and x+x ; y+ y is the only possible probabilistic transition of x+x to equivalence class [y+ y] ↔ .
Thus it is sufficient to prove that µ(x, y) = 1. The assumption x ↔ x + x implies µ(x, [y]↔) =
µ(x+ x, [y]↔). Having that µ(x, [y]↔) = µ(x, y), µ(x+ x, [y+ y]↔) = µ(x+ x, y+ y) = µ(x, y)2

and [y]↔ = [y + y]↔ , we obtain µ(x, y) = µ(x, y)2 for µ(x, y) ∈ [0, 1]. It follows that µ(x, y) = 1.
By this we proved that x makes only one probabilistic transition exactly to the equivalence class of
y. �

Theorem 4.3.18 (Soundness of pACP+). Let p and q be closed pACP+ terms. If pACP+ ` p = q,
then p↔ q.

Proof. We only treat the axioms which are added to pBPA to obtain pACP+. The proof of soundness
of the axioms of pBPA remains valid in pACP+ as well. For the axioms: CF, CM2, CM3, CM5, CM6,
CM7, D1 and D2 we only give an equivalence relation that relates the left-hand side and the right-hand
side of the considered axiom. Observe that the non-trivial pairs of related processes by these relations
are D(pACP+) and DP(pACP+) processes. As we know DP(pACP+) processes can perform only
action transitions. Thus, the part of the soundness proof regarding the action transitions (including
action termination) for these pairs is very similar to the soundness proof of the corresponding ACP
axiom with only difference in the used notation. For the D(pACP+) processes we use Proposition
4.3.10. By combining Proposition 4.3.11, 4.3.12 and 4.3.13 it is easy to conclude that the proposed
equivalence relations for these axioms are bisimulation.

Axiom CF. Relation R is defined in the following way:

R = Eq
(

{(c, a | b), (c̆, ă | b̆) : γ(a, b) = c}
)

.

Axiom CM2. Relation R is defined in the following way:

R = Eq
(

{(a‖ p, a · p) : p ∈ SP(pACP+)} ∪ {(ă‖ p, ă · p) : p ∈ SP(pACP+)}
)

.

108 4.3. Operational semantics

Axiom CM3. Relation R is defined in the following way:

R = Eq
(

{(a · p‖ q, a · (p ‖ q)) : p, q ∈ SP(pACP+)}
∪ {(ă · p‖ q, ă · (p ‖ q)) : p, q ∈ SP(pACP+)}

)

.

Axiom CM4. We define a relation R in the following way:

R = Eq
(

{((p+ q)‖ s, p‖ s+ q‖ s) : p, q, s ∈ SP(pACP+)}
∪ {((u+ v)‖ s, u‖ s+ v‖ s) : u, v ∈ DP(pACP+), s ∈ SP(pACP+)}

)

.

Suppose
(

((p + q)‖ s), (p‖ s + q‖ s)
)

∈ R for some p, q, s ∈ SP(pACP+) and M ∈
DP(pACP+)/R. Then

µ((p+ q)‖ s, (u+ v)‖ s) = µ(p+ q, u+ v) = µ(p, u) · µ(q, v)
= µ(p‖ s, u‖ s) · µ(q‖ s, v‖ s) = µ(p‖ s+ q‖ s, u‖ s+ v‖ s).

If (u + v)‖ s ∈ M then also u‖ s + v‖ s ∈ M and the result µ((p + q)‖ s,M) = µ(p‖ s +
q‖ s,M) follows from Proposition 3.3.10. Otherwise, µ((p+q)‖ s,M) = µ(p‖ s+q‖ s,M) =
0.

Axiom PrCM1. We define a relation R in the following way:

R = Eq
(

{((p tπq)‖ s, p‖ s tπq‖ s) : p, q, s ∈ SP(pACP+)}
)

.

Suppose
(

(p tπq)‖ s, p‖ s tπq‖ s
)

∈ R for some p, q, s ∈ SP(pACP+) and M ∈
DP(pACP+)/R. Then,

µ((p tπq)‖ s, v‖ s) = µ(p tπq, v) = π · µ(p, v) + (1− π) · µ(q, v)
= π · µ(p‖ s, v‖ s) + (1− π) · µ(q‖ s, v‖ s) = µ(p‖ s tπq‖ s, v‖ s).

If v‖ s ∈M then the result µ((p tπq)‖ s,M) = µ(p‖ s tπq‖ s,M) follows from Proposition
3.3.10. Otherwise, µ((p tπq)‖ s,M) = µ(p‖ s tπq‖ s,M) = 0.

Axiom CM5. We define a relation R in the following way:

R = Eq
(

{(a · p | b, c · p), (ă · p | b̆, c̆ · p) : p ∈ SP(pACP+), γ(a, b) = c}
)

.

Axiom CM6. Relation R is defined in the following way:

R = Eq
(

{(a | b · p, c · p), (ă | b̆ · p, c̆ · p) : p ∈ SP(pACP+), γ(a, b) = c}
)

.

Axiom CM7. Relation R is defined in the following way:

R = Eq
(

{(a · p | b · q, c · (p ‖ q)), (ă · p | b̆ · q, c̆ · (p ‖ q)) : p, q ∈ SP(pACP+), γ(a, b) = c}
)

.

Chapter 4. Parallel composition and communication 109

Axiom PrCM2. We define a relation R in the following way:

R = Eq
(

{((p tπq) | s, p | s tπq | s) : p, q, s ∈ SP(pACP+)}
)

.

Suppose
(

(p tπq) | s, p | s tπq | s
)

∈ R for some p, q, s ∈ SP(pACP+) and M ∈
DP(pACP+)/R. Then

µ((p tπq) | s, v |w) = µ(p tπq, v) · µ(s, w) = (π · µ(p, v) + (1− π) · µ(q, v)) · µ(s, w)
= π · µ(p, v) · µ(s, w) + (1− π) · µ(q, v) · µ(s, w)
= µ(p | s tπq | s, v |w).

If v |w ∈ M then µ((p tπq) | s,M) = µ(p | s tπq | s,M) by use of Proposition 3.3.10. Other-
wise, µ((p tπq) | s,M) = µ(p | s tπq | s,M) = 0.

Axiom PrCM3. Relation R is defined as:

R = Eq
(

{(p | (q tπs), p | s tπp | s) : p, q, s ∈ SP(pACP+)}
)

.

and the proof is similar to the proof of PrCM2.

Axiom PrMM1. We define a relation R in the following way:

R = Eq
(

{(p ‖ q, (p, p)]||[(q, q)) : p, q ∈ SP(pACP+)}
)

.

Suppose that
(

p ‖ q, (p, p)]||[(q, q)
)

∈ R for some p, q ∈ SP(pACP+) andM ∈ DP(pACP+)/R.
Then u is reachable from p ‖ q and also from (p, p)]||[(q, q) if and only if u ≡ v‖ q+w‖ p+v |w
for some v, w ∈ DP(pACP+) such that p ; v and q ; w. From the definition of the PDF we
have that

µ(p ‖ q, u) = µ(p, v) · µ(q, w) = µ((p, p)]||[(q, q), u).
Using Proposition 3.3.10 we obtain µ(p ‖ q,M) = µ((p, p)]||[(q, q),M) in case u ∈ M . In any
other case µ(p ‖ q,M) = µ((p, p)]||[(q, q),M) = 0.

Axiom PrMM2. We define a relation R in the following way:

R = Eq
(

{((p1 tπp2, z)]||[(q, w), (p1, z)]||[(q, w) tπ(p2, z)]||[(q, w)) : p1, p2,

q, z, w ∈ SP(pACP+)}
)

.

Suppose
(

(p1 tπp2, z)]||[(q, w), (p1, z)]||[(q, w) tπ(p2, z)]||[(q, w)
)

∈ R for some p1,p2, q, z,

w ∈ SP(pACP+) and M ∈ DP(pACP+)/R. u is reachable from (p1 tπp2, z)]||[(q, w) iff
(p1, z)]||[(q, w) tπ(p2, z)]||[(q, w). Then, u ≡ x‖ w + y‖ z + x | y for some x, y ∈ DP(pACP+)
such that p ; x and q ; y. From the definition of the PDF we have that

µ((p1 tπp2, z)]||[(q, w), u) = µ(p1 tπp2, x) ·µ(q, y) = (π ·µ(p1, x)+(1−π) ·µ(p2, x)) ·µ(q, y)

110 4.3. Operational semantics

and

µ((p1, z)]||[(q, w) tπ(p2, z)]||[(q, w), u) = π · µ((p1, z)]||[(q, w), u)
+ (1− π) · µ((p2, z)]||[(q, w), u)

= π · µ(p1, x) · µ(q, y) + (1− π) · µ(p2, x) · µ(q, y).

If u ∈M , then we conclude that
µ((p1 tπp2, z)]||[(q, w),M) = µ((p1, z)]||[(q, w) tπ(p2, z)]||[(q, w),M) by use of Proposition
3.3.10. Otherwise
µ((p1 tπp2, z)]||[(q, w),M) = µ((p1, z)]||[(q, w) tπ(p2, z)]||[(q, w),M) = 0.

Axiom PrMM3. We define a relation R in the following way:

R = Eq
(

{((p, z)]||[(q1 tπq2, w), (p, z)]||[(q1, w) tπ(p, z)]||[(q2, w)) : p, q1, q2,

z, w ∈ SP(pACP+)}
)

.

The proof is similar to the previous one.

Axiom D1. Relation R is defined in the following way:

R = Eq
(

{(∂H(a), a), (∂H(ă), ă) : a /∈ H}
)

Axiom D2. Relation R is defined in the following way:

R = Eq
(

{(∂H(a), δ), (∂H(ă), δ̆) : a ∈ H}
)

Axiom D3. We define a relation R in the following way:

R = Eq
(

{(∂H(p+ q), ∂H(p) + ∂H(q)) : p, q ∈ SP(pACP+)}
∪ {(∂H(u+ v), ∂H(u) + ∂H(v)) : u, v ∈ DP(pACP+)}

)

.

Suppose that (∂H(p + q), ∂H(p) + ∂H(q)) ∈ R for some p, q ∈ SP(pACP+) and M ∈
DP(pACP+)/R. Then,

µ(∂H(p+ q), ∂H(u+ v)) = µ(p+ q, u+ v) = µ(p, u) · µ(q, v)

and
µ(∂H(p) + ∂H(q), ∂H(u) + ∂H(v)) = µ(p+ q, u+ v) = µ(p, u) · µ(q, v).

If ∂H(u + v) ∈ M then also ∂H(u) + ∂H(v) ∈ M and the result µ(∂H(p + q),M) =
µ(∂H(p) + ∂H(q),M) follows from Proposition 3.3.10. Otherwise, µ(∂H(p + q),M) =
µ(∂H(p) + ∂H(q),M) = 0.

Axiom D4. We define a relation R in the following way:

R = Eq
(

{(∂H(p · q), ∂H(p) · ∂H(q)) : p, q ∈ SP(pACP+)}
{(∂H(u · q), ∂H(u) · ∂H(q)) : u ∈ DP(pACP+), q ∈ SP(pACP+)}

)

.

Suppose that (∂H(p · q), ∂H(p) · ∂H(q)) ∈ R for some p, q ∈ SP(pACP+) and M ∈
DP(pACP+)/R. Then, µ(∂H(p · q), ∂H(u · q)) = µ(p · q, u · q) = µ(p, u) = µ(∂H(p), ∂H(u)) =
µ(∂H(p)·∂H(q), ∂H(u)·∂H(q)). The result follows from Proposition 3.3.10 since ∂H(u·q) ∈M
iff ∂H(u) · ∂H(q) ∈M .

Chapter 4. Parallel composition and communication 111

Axiom PrD5. We define a relation R in the following way:

R = Eq
(

{(∂H(p tπq), ∂H(p) tπ∂H(q)) : p, q ∈ SP(pACP+)}
)

.

Suppose (∂H(p tπq), ∂H(p) tπ∂H(q)) ∈ R for some p, q ∈ SP(pACP+) and M ∈
DP(pACP+)/R. Then,

µ(∂H(p tπq), ∂H(u)) = µ(p tπq, u) = π · µ(p, u) + (1− π) · µ(q, u)
= π · µ(∂H(p), ∂H(u)) + (1− π) · µ(∂H(q), ∂H(u))
= µ(∂H(p) tπ∂H(q), ∂H(u)).

From Proposition 3.3.10 follows that µ(∂H(p tπq),M) = µ(∂H(p) tπ∂H(q),M) if ∂H(u) ∈
M . Otherwise, µ(∂H(p tπq),M) = µ(∂H(p) tπ∂H(q),M) = 0.

Axiom PrMM4. Let us suppose that p, q, z, w ∈ SP(pACP+) and p↔ p + p and q↔ q + q and let
RP(p) = {u : p ; u} andRP(q) = {v : q ; v}. From Lemma 4.3.17 ii. it follows that

for all u1, u2 ∈ RP(p), u1↔ u2 and µ(p, [u1]↔) = µ(p,RP(p)) = 1 and

for all v1, v2 ∈ RP(q), v1↔ v2 and µ(q, [v1]↔) = µ(q,RP(q)) = 1. (1)
We will prove that (p, z)]||[(q, w)↔ p‖ w + q‖ z + p | q.

Probabilistic transitions. Assume that (p, z)]||[(q, w) ; x. Then x ≡ u‖ w + v‖ z + u | v
for some u ∈ RP(p) and v ∈ RP(q). It follows directly that p‖ w + q‖ z + p | q ;

u‖ w + v‖ z + u | v. And x↔ x.
Now assume that p‖ w + q‖ z + p | q ; x. Then, x ≡ u1‖ w + v1‖ z + u2 | v2 and
u1, u2 ∈ RP(p), v1, v2 ∈ RP(q). We obtain that (p, z)]||[(q, w) ; u1‖ w+v1‖ z+u1 | v1.
Moreover, since u1 ↔ u2 and v1 ↔ v2 according to the Congruence theorem (Theorem
4.3.15) we obtain u1‖ w + v1‖ z + u2 | v2↔ u1‖ w + v1‖ z + u1 | v1. (2)
Note that in both cases we obtained that the reachable dynamic processes are bisimilar -
in the first case both processes reach the same process x, in the second case it is obtained
due to the Congruence theorem. Therefore, no investigation on action transitions or action
termination are necessary.

PDF. From the previous discussion about probabilistic transitions of (p, z)]||[(q, w) we have
that the set of all reachable processes from this process is N = {u‖ w+ v‖ z+u | v : u ∈
RP(p), v ∈ RP(q)} = RP(p)z ‖ wRP(q). Moreover, if n1, n2 ∈ N then n1↔ n2 (from
(1)). And also, if u‖ w+ v‖ z+ u | v ∈ N then N ⊆ [u‖ w+ v‖ z+ u | v]↔ . Finally, we
obtain:

µ((p, z)]||[(q, w), [u‖ w + v‖ z + u | v]↔)
= µ((p, z)]||[(q, w), N) = µ((p, z)]||[(q, w),RP(p)z ‖ wRP(q))
= µ(p,RP(p)) · µ(q,RP(q)) = 1.

Therefore, µ((p, z)]||[(q, w), [u‖ w + v‖ z + u | v]↔) = 1 and for any other equivalence
class M ∈ DP(pACP+)/↔ we have that µ((p, z)]||[(q, w),M) = 0.
Now we discuss the set of reachable processes from p‖ w + q‖ z + p | q. Let this set be
denoted by K. From the discussion about the probabilistic transitions of this process we
conclude that K = {u‖ w + v‖ z + u1 | v1 : u, u1 ∈ RP(p), v, v1 ∈ RP(q)}. Moreover,

112 4.3. Operational semantics

if k1, k2 ∈ K, then k1↔ k2. And also, if u‖ w + v‖ z + u1 | v1 ∈ K then K ⊆ [u‖ w +
v‖ z + u1 | v1]↔ . Therefore,

µ(p‖ w + q‖ z + p | q, [u‖ w + v‖ z + u1 | v1]↔)
= µ(p‖ w + q‖ z + p | q,K)
= µ(p‖ w + q‖ z + p | q, ⋃

u′∈RP(p)

⋃

v′∈RP(q)

⋃

u′
1∈RP(p)

⋃

v′1∈RP(q)

{u′‖ w + v′‖ z + u′1 | v′1})

=
∑

u′∈RP(p)

∑

v′∈RP(q)

∑

u′
1∈RP(p)

∑

v′1∈RP(q)

µ(p, u′) · µ(q, v′) · µ(p, u′1) · µ(q, v′1)

=
(

∑

u′∈RP(p)

µ(p, u′)
)

·
(

∑

v′∈RP(q)

µ(p, v′)
)

·
(

∑

u′
1∈RP(p)

µ(p, u′1)
)

·
(

∑

v′1∈RP(q)

µ(q, v′1)
)

= 1.

Thus, µ(p‖ w + q‖ z + p | q, [u‖ w + v‖ z + u1 | v1]↔) = 1. For any other equivalence
class M ∈ DP(pACP+)/↔ we have that µ(p‖ w + q‖ z + p | q,M) = 0.
Finally, from (2) it follows that [u‖ w + v‖ z + u | v]↔ = [u‖ w + v‖ z + u1 | v1]↔ .
Hence,

µ((p, z)]||[(q, w), [u‖ w+v‖ z+u | v]↔) = µ(p‖ w+q‖ z+p | q, [u‖ w+v‖ z+u | v]↔) = 1.

And, µ((p, z)]||[(q, w),M) = µ(p‖ w + q‖ z + p | q,M) = 0 for all other M ∈
DP(pACP+)/↔ .

Axiom PrCM4. Let s ∈ SP(pACP+) such that s↔ s+ s andRP(s) = {w : s ; w}. By Lemma
4.3.17ii. we have that for every w1, w2 ∈ RP(s), w1 ↔ w2 and µ(s,RP(s)) = 1. We will
prove that for arbitrary p, q ∈ SP(pACP+), (p+ q) | s↔ p | s+ q | s.

Probabilistic transitions. Suppose that (p + q) | s ; u. We obtain that u ≡ (v1 + v2) |w1 and
p ; v1, q ; v2, w1 ∈ RP(s). Then also p | s + q | s ; v1 |w1 + v2 |w1. According to
the definition of bisimulation relation we need to prove that
(v1 + v2) |w1↔ v1 |w1 + v2 |w1. (3)
If p | s+ q | s ; u, then u ≡ v1 |w1 + v2 |w2 and p ; v1, q ; v2, w1, w2 ∈ RP(s). Then
(p+ q) | s ; (v1 + v2) |w1. Therefore, we need to prove that
(v1 + v2) |w1↔ v1 |w1 + v2 |w2. (4)

Action transitions. One can see that (3) is a special case of (4), therefore it is sufficient to prove
the case (4).
Suppose that (v1 + v2) |w1

a→ p for some a ∈ A. Then for some b, c ∈ A such that
γ(b, c) = a one of the following cases occurs: (1.) ((a.) v1

b→ p1 or (b.) v2
b→ p1) and

w1
c→ p2 and p ≡ p1 ‖ p2, or (2.) ((a.) v1

b→ p or (b.) v2
b→ p) and w1

c→ √, or (3.) ((a.)
v1

b→ √ or (b.) v2
b→ √) and w1

c→ p. Whenever v1 |w1
a→ p (cases 1.a., 2.a., 3.a.) it

follows directly that v1 |w1 + v2 |w2
a→ p as well. In the other cases since w1 ↔ w2, we

have that (1.b.) w2
c→ p′2 and p2↔ p′2 and therefore v1 |w1 + v2 |w2

a→ p1 ‖ p′2; moreover
p1 ‖ p2 ↔ p1 ‖ p′2 according to the Congruence theorem; (2.b.) w2

c→ p′ and p ↔ p′ and
v1 | p1 + v2 |w2

a→ p′ and p↔ p′; (3.b.) w2
c→√ and v1 |w1 + v2 |w2

a→ p.
Suppose that v1 |w1 + v2 |w2

a→ p for some a ∈ A. Then, for some b, c ∈ A such that
γ(b, c) = a one of the following cases occurs: (1.) ((a.) v1

b→ p1 and w1
c→ p2 and

p ≡ p1 ‖ p2 or (b.) v1
b→ √ and w1

c→ p or (c.) v1
b→ p and w1

c→ √) or (2.) ((a.)

Chapter 4. Parallel composition and communication 113

v2
b→ p1 and w2

c→ p2 and p ≡ p1 ‖ p2 or (b.) v2
b→ √ and w2

c→ p or (c.) v2
b→ p and

w2
c→ √). In the cases 1.a., 1.b. and 1.c. it follows directly that (v1 + v2) |w1

a→ p. For
the other cases since w1 ↔ w2 it follows that (2.a.) w1

c→ p′2 and p2 ↔ p′2 from which
(v1 + v2) |w1

a→ p1 ‖ p′2 and p1 ‖ p2 ↔ p1 ‖ p′2; (2.b.) w1
c→ p′ and p ↔ p′; therefore

(v1 + v2) |w1
a→ p′ and p↔ p′; (2.c.) w1

c→√ and (v1 + v2) |w1
a→ p.

Action termination. Suppose that (v1 + v2) |w1
a→√ for some a ∈ A. Then for some b, c ∈ A

such that γ(b, c) = a one of the following cases occurs: (1.) v1
b→ √ and w1

c→ √, or
(2.) v2

b→ √ and w1
c→ √. In the first case it follows that v1 |w1

a→ √ and therefore
v1 |w1 + v2 |w2

a→ √ as well. In the second case since w1↔ w2, we have that w2
c→ √.

Then, v2 |w2
a→√ and also v1 |w1 + v2 |w2

a→√.
Suppose that v1 |w1 + v2 |w2

a→ √ for some a ∈ A. Then, for some b, c ∈ A such
that γ(b, c) = a one of the following cases occurs: (1.) v1

b→ √ and w1
c→ √ or (2.)

v2
b→ √ and w2

c→ √. In the first case it follows directly that v1 + v2
b→ √ and also

(v1 + v2) |w1
a→ √. In the second case, since w1 ↔ w2 it follows that w1

c→ √. Since
v1 + v2

b→ √ we obtain that (v1 + v2) |w1
a→√.

Herewith we proved (3) and (4) valid.

PDF. Now, let us suppose thatM ∈ DP(pACP+)/↔ . From (4) follows that (v1+v2) |w1 ∈M
iff v1 |w1 + v2 |w2 ∈ M for some w1, w2 ∈ RP(s) and for some v1 and v2 such that
p ; v1 and q ; v2. Moreover, the subset of M reachable from (p + q) | s is contained
in the set K = ([v1]↔ + [v2]↔) |RP(s) ⊂ M . And the subset of M reachable from
p | s + q | s is contained in the set N = [v1]↔ |RP(s) + [v2]↔ |RP(s) ⊂ M . Having
that µ(s,RP(s)) = 1 we obtain:
µ((p+ q) | s,M) = µ((p+ q) | s,K) = µ(p, [v1]↔) · µ(q, [v2]↔) · µ(s,RP(s))

= µ(p, [v1]↔) · µ(q, [v2]↔). And

µ(p | s+ q | s,M) = µ(p | s+ q | s,N)
= µ(p, [v1]↔) · µ(s,RP(s)) · µ(q, [v2]↔) · µ(s,RP(s))
= µ(p, [v1]↔) · µ(q, [v2]↔).

Thus, for a reachable class M we obtain that µ((p+ q) | s,M) = µ(p | s+ q | s,M). If M
is not reachable from (p+q) | s and p | s+q | s, then µ((p+q) | s,M) = µ(p | s+q | s) = 0.

Axiom PrCM5. In a similar way like the proof of PrCM4.
�

Completeness theorem

In order to prove the completeness property of pACP+ with respect to the bisimulation model we use
Verhoef’s method as described in Section 2.3.

Lemma 4.3.19. (Conservativity of TpACP+ with respect to TpBPA) The term-deduction system TpACP+

is an operationally conservative extension of the term-deduction system TpBPA. �

Proof. In order to prove conservativity it is sufficient to verify the following condition:

- TpBPA is pure , well-founded term-deduction system in path format;

114 4.4. Alternative definitions

- TpACP+ is a term-deduction system in path format;

- TpBPA ⊕TpACP+ is defined;

- There are no conclusions s a→ t or s a→ √
of a rule in T(pACP+) such that s = x or s =

f(x1, . . . , xn) for some operator f of pBPA.

That all these properties hold can be trivially checked from the relevant definitions. �

Lemma 4.3.20. The term-deduction system TpACP+ is an operationally conservative extension up to
the probabilistic bisimulation of the term-deduction system TpBPA.

Proof. In order to prove that TpACP+ is an operationally conservative extension up to the probabilistic
bisimulation with respect to TpBPA we need to check that the probabilistic bisimulation equivalence
is defined in terms of predicate and relation symbols. Apart from the fourth clause in Definition
3.3.11, probabilistic bisimulation is defined in terms of predicate and relation symbols. Hence, from
the previous result for operationally conservative extension (Lemma 4.3.19) we obtain that for each
closed pBPA term s, its term-relation-predicate diagrams in both TpBPA and TpACP+ are the same.
Moreover, for these terms the probability distribution function is defined in the same way in both
TpBPA and TpACP+ (Definition 3.3.14 and Definition 4.3.4), which provides us with a conclusion that
the fourth clause in Definition 3.3.11 does not disturb the notion of the probabilistic bisimulation
defined only in terms of predicate and relation symbols. �

Lemma 4.3.21. (Conservativity of pACP+ with respect to pBPA) pACP+ is an equationally conser-
vative extension of pBPA, that is, if t and s are closed pBPA terms, then pBPA ` t = s ⇔ pACP+ `
t = s.

Proof. According to the used method the conclusion follows from the facts that:

- TpACP+ is an operationally conservative extension of TpBPA up to probabilistic bisimulation (see
Lemma 4.3.21);

- pBPA is a complete axiomatization with respect to the bisimulation model (see Theorem 3.3.60);

- TpACP+ with respect to the probabilistic bisimulation equivalence induces a model of pACP+ (see
Theorem 4.3.18).

�

Theorem 4.3.22 (Completeness theorem for pACP+). If t and s are closed pACP+ terms, then
MpACP+ ` t↔ s⇒ pACP+ ` t = s.

Proof. Completeness follows immediately from the following results:

- pACP+ has the elimination property for pBPA (see Theorem 4.2.5);

- pACP+ is an equationally conservative extension of pBPA (see Lemma 4.3.21).
�

Chapter 4. Parallel composition and communication 115

4.4 Alternative definition of parallel composition
Here we give an axiom system that can be considered as equivalent to pACP+ in the sense that a
equation of terms that do not contain ‖ , | and]||[operators holds in one theory if and only if it holds
in the other theory. The main idea for proposing a new axiom system is to find an appropriate theory
which does not have any extra operators. As it has been already mentioned, in order to obtain a finite
axiomatization of the parallel composition operator in the previous section we introduced the merge
with memory operator]||[.

We denote the new process algebra by pACP. The signature of pACP consists of the operators
of pBPA, three binary operators: ‖ , ‖ and | and an unary operator ∂H with H ⊆ A. The axioms
about the merge operator (without the auxiliary operator]||[) are given in Table 4.8. The axioms for
the other operators are the same as in pACP+ except that the axioms PrCM1, PrCM2 and PrCM3
are not included. The distributive laws of ‖ and | with respect to tπ are not needed anymore (this is
exactly what these axioms express), because they are integrated in the axioms of the merge operator.
Of course as a result of this, if we consider pACP as an extension of pBPA then it does not have the
elimination property for pBPA because ‖ and | cannot be eliminated.

x ‖ y = x‖ y + y‖ x + x | y
(x tπx

′)‖ z + y‖ w + (x tπx
′) | y = (x‖ z + y‖ w + x | y) tπ(x′‖ z + y‖ w + x′ | y)

x‖ z + (y tπy
′)‖ w + x | (y tπy

′) = (x‖ z + y‖ w + x | y) tπ(x‖ z + y′‖ w + x | y′)

Table 4.8: Additional axioms for pACP.

Without proving it, we claim that equations p ‖ q = s, for some pBPA closed terms p, q and s, is
derivable in pACP+ if and only if the same equation is derivable in pACP.

4.5 Another viewpoint to parallel composition
It is quite common when a new feature is added to a standard process algebra (whatever type it is:
ACP, CCS, CSP , LOTOS etc.) one tries to stay as close as possible to the underlying axiomatiza-
tion and operational semantics. Especially in the framework of ACP it is an important issue to keep
the key axiom of parallel composition expressing the interleaving reasoning. The process algebra
pACP+ presented in the previous section does not contain this axiom, but we can see that PrMM4 is
a restricted variant of it. Now we will present a process algebra with a parallel composition, denoted
ACPπ, which is an extension of pBPA (so it has a notion of probability) and has the axiom

x ‖ y = x‖ y + y‖ x + x | y CM1

in the unrestricted form. (The detailed work on this axiomatization can be found in [8].) But we will
show by means of an example that our attempt to have a simple axiom that is very close to ACP leads
to contraintuitive results.

Let us repeat again that we want to construct a probabilistic process algebra which has the axiom
x ‖ y = x‖ y + y‖ x + x | y without any restriction. Thus, we define ACPπ in the following way:
the signature of ACPπ consists of the operators of pBPA, the three merge operators: ‖ , ‖ and | and
the encapsulation operator ∂H with H ⊆ A. ACPπ is parametrized by a communication function
γ : Aδ × Aδ → Aδ. The set of axioms of ACPπ consists of the axioms of pBPA and axiom CM1

116 4.5. Alternative definitions

given above and the axioms given in Table 4.3 and 4.4. Therefore, ACPπ does not have any additional
operator. The axiom system is quite simple and close to ACP. For the same reason as explained in
Section 4.2, the distribution laws of | with respect to + are in a restricted form. Note that ACPπ has
the elimination property for pBPA, if the set of basic terms is defined by Definition 3.2.19 [8].

Operational semantics of ACPπ Next, we present the operational semantics of ACPπ which in-
duces the bisimulation model of the process algebra. We give only the deduction rules, and the full
construction of the model can be found in [8]. The operational semantics of ACPπ is given by the
term-deduction system TACPπ = (Σ̆ACPπ , DRACPπ) with Σ̆ACPπ = (Aδ ∪ Ăδ,+, ·, tπ, ‖ , ‖ , | , ∂H)
and with the deduction rules for pBPA (defined on page 77), the rule for the merge operator in Table
4.9, the deduction rules for probabilistic transitions of the left merge, the communication merge and
the encapsulation operator in Table 4.5 and the rules for action transitions in Table 4.6. The definition
of SP(ACPπ) and DP(ACPπ) can easily be obtained following the pattern in Section 3.3.1. The PDF
function µ on PT(ACPπ) is defined by Definition 4.5.1 and the probabilistic bisimulation relation on
PT(ACPπ) is defined by Definition 3.3.11 when PA is replaced by ACPπ.

x ; x′, y ; y′, x ; x′′, y ; y′′

x ‖ y ; x′‖ y + y′‖ x + x′′ | y′′

Table 4.9: Rules for the merge operator in ACPπ.

Definition 4.5.1. (PDF for ACPπ) A probability distribution function on PT(ACPπ) is defined by the
equalities in Table 3.6, 3.7 and 4.10.

µ(x ‖ y, x′‖ y + y′‖ x+ x′′ | y′′) = µ(x, x′) · µ(y, y′) · µ(x, x′′) · µ(y, y′′)
µ(x‖ y, x′‖ y) = µ(x, x′)
µ(x | y, x′ | y′) = µ(x, x′) · µ(y, y′)
µ(∂H(x), ∂H(x′)) = µ(x, x′)
µ(x, u) = 0 otherwise

Table 4.10: Equalities that defined PDF’s for ACPπ (part 3 - parallel composition)

Differences with pACP+ Thus, now we have two extensions of pBPA, both with a notion of prob-
abilistic choice and parallel composition. The main differences between the two process algebras
appear in the axioms and the deduction rules of the ‖ operator. The axioms and the deduction rules
for the other operators are common for both systems. So, pACP+ has a more complex axiom system
than ACPπ, but it has a simple and intuitively clear operational semantics. In both systems the inter-
leaving approach to parallel composition is followed and the choice of the process which executes the
next action is considered to be non-deterministic. But the “moment” when two parallel processes may
interleave makes these systems different. Intuitively, in pACP+ the interleaving between two parallel
processes can take place only if they do not have unresolved probabilistic choice (in our terminology,
they are trivial probabilistic processes). In order to have a finite axiomatization, we introduced an

Chapter 4. Parallel composition and communication 117

auxiliary operator]||[. In ACPπ the interleaving of two parallel processes can take place “immedi-
ately”, which is expressed by the unrestricted axiom: x ‖ y = x‖ y + y‖ x + x | y. But by applying
this axiom, informally speaking, we produce copies of x (y) and each of them may contain an unre-
solved probabilistic choice. In other words, on the right-hand side of the axioms the two occurrences
of x, one in x‖ y and the second in x | y, become independent processes which resolve their internal
probabilistic choice (if any) independently. This means that the outcomes of the two probabilistic
choices may differ (see also the deduction rule of the ‖ operator and the definition of the PDF func-
tion). But the component x on the left-hand side of the axiom cannot have two different outcomes
of its probabilistic choice1. Thus, this scenario has to be prevented from appearing. The solution we
proposed is actually pACP+.

Why it does not work! The approach used in ACPπ does not give the anticipated results for some
concurrent probabilistic processes. This is illustrate by the following example.

Consider the processes P ≡ send1 and Q ≡ read1 tπfail. Process P executes the action
send1 which may be treated as “send a datum at port 1”. Process Q executes the action read1 with
probability π, that is, with probability π it reads a datum at port 1, or it fails with probability 1 − π
and no further communications with process P are possible. We remark that this situation is real if
communication is carried out via an unreliable transmission channel. Communication of P and Q is
defined by a communication action comm1 = send1 | read1. Intuitively, we expect that the behaviour
of the whole system ∂H(P ‖Q), for H = {send1, read1}, is expressed by the term comm1 tπfail ·δ.
But in ACPπ we obtain the following expression:

ACPπ ` ∂H(P ‖Q) = ∂H(P ‖ Q +Q‖ P + P |Q) = δ + (δ tπfail · δ) + (comm1 tπδ)
= comm1 tπ2fail · δ t(1−π)2(fail · δ + comm1) t(1−π)πδ.

There is a scenario in which non-deterministic choice between the probabilistically dependent pro-
cesses fail and comm1 arises. Moreover, there is a non-zero probability with which deadlock may
occur. It is obvious that this process does not meet our intuition about the behaviour of the given
parallel system.

1This is very similar to the situation with the idempotency law A3, whose restricted version AA3 is taken in pBPA.

118 4.5. Alternative definitions

Chapter 5

Probabilistic process algebra with discrete
time

5.1 Introduction

The need to model timing aspects and to involve timed behaviour in the specification and the ver-
ification of concurrent systems has been widely accepted and explored in the framework of formal
methods. Simultaneously introducing time and probability provides a new aspect to the specification
and verification of concurrent systems. It allows more accurate modelling of timing behaviour and
unreliability which in standard methods usually are encoded by alternative composition. Since one of
the main issues in probabilistic methods is resolving non-determinism, combining time and probabil-
ity can lead to a desired specification of a system which is free of non-determinism (see the example
in Chapter 7).

In this chapter, we propose an extension of the probabilistic process algebras introduced in Chapter
3 and 4 with time features, which can be used to model both probabilistic and timing behaviour of
systems. We consider a discrete-time extension, namely, time is introduced by cutting it up into a
countably infinite number of time slices. Timing of actions is done with respect to the time slice in
which they are executed. Furthermore, we do not assume that an absolute clock exists, but the moment
when an action occurs is measured with respect to the previous action. This gives the relative aspect
of timing. Thus, we end up with a discrete relative time version of probabilistic process algebra. In
this chapter, we actually present three different process algebras built up in a modular way. First, we
extend pBPA with constants that denote undelayable actions, actions that can be executed only in the
time slice they are initialized in. To make the passage of time explicit, the time unit delay operator
is introduced. In order to cope with more complex systems it is necessary to extend this algebra by
constants that represent processes which can be initialized in the current or any future time slice.
Thus, we end up with another timing extension of pBPA (Section 5.2.2).

Next, to the process algebra from Section 5.2.2 a notion of parallel composition and communica-
tion is added, following the same approach taken in Chapter 4. However, in order to obtain a finite
axiomatization and clear deduction rules in the proposed time extension of pACP+ we add an extra
operator whose role will be explained later.

119

120 5.2. Basic process algebra

5.2 Basic Probabilistic Process Algebra with discrete relative
time

In the next section, we present two basic probabilistic process algebras with discrete relative time.
The first process algebra, pBPA−

drt does not have a notion of delayable actions. It means that processes
presented by the terms of this algebra are either undelayable, their execution starts within the current
time slice, or delayable but only for a finite (determined) number of time slices. The second process
algebra, pBPAdrt, is an extension of pBPA−

drt and it is obtained by adding new constants denoting
delayable actions and axioms that define equalities between delayable processes.

5.2.1 Probabilistic process algebra with undelayable actions
Basic Probabilistic Process Algebra with discrete relative time, pBPA−

drt, for a certain set of atomic
actions A has the signature that consists of: constants a for a ∈ A and δ for δ /∈ A, the operators of
pBPA: +, · and tπ for π ∈ 〈0, 1〉 and the unary (time) operators: σrel one unit delay operator and νrel

“now” operator. The axioms of pBPA−
drt are shown in Table 3.1+5.1+5.2.

x + y = y + x A1
(x + y) + z = x + (y + z) A2
a + a = a DRTAA3

(x + y) · z = x · z + y · z A4
(x tπy) + z = (x + z) tπ(y + z) PrAC5

σrel(x) + σrel(y) = σrel(x+ y) DRT1
σrel(x) · y = σrel(x · y) DRT2

νrel(a) = a DCS1
νrel(x+ y) = νrel(x) + νrel(y) DCS2
νrel(x · y) = νrel(x) · y DCS3
νrel(σrel(x)) = δ DCS4

x + δ = x DRT3
δ · x = δ DRT4

Table 5.1: Axioms of pBPA−
drt - part 1.

σrel(x tπy) = σrel(x) tπσrel(y) PrDRT1
νrel(x tπy) = νrel(x) tπνrel(y) PrDCS1

Table 5.2: Probabilities and time operators.

For a given set of atomic actionsA, a constant a (for a ∈ A) denotes a process that with probability
1 executes action a within the current time slice and then terminates. δ denotes a process, called

Chapter 5. Probabilistic process algebra with time 121

undelayable deadlock, that with probability 1 deadlocks in the current time slice. The “time” operator
σrel(p) represents a process which behaves exactly like p but its initialization is postponed for one time
slice. In that way, this operator makes the passage of time explicit. The other time operator νrel is
used to expand the concept of “undelayable” activities from the set of atomic action over the set of
processes in general. Namely, term νrel(p) represents a process that has to start its activities before the
next time slice starts (if there are some) and at the same time the operator blocks all activities which p
can perform but which are executable from the next time slice on (axiom DCS4). We shortly denote
A

δ
= {a : a ∈ Aδ} and A = {a : a ∈ A}.
Axiom PrDRT1 needs some explanation. For probabilistic choice as well as for non-determini-

stic choice we use the concept of weak time factorization which says that time passing does not
determine a choice (otherwise we deal with stochastic processes which is not an issue in this thesis).
If both processes in probabilistic choice can idle to the next time slice then the moment when the
choice is made does not affect the outcome of the choice. Let us consider the following processes:
σrel(a) tπσrel(b) and σrel(a tπb). In the first process the probabilistic choice is resolved within the
current time slice. After that a time tick occurs and then, in the second time slice, action a is executed
with probability π and action b is executed with probability 1− π. The second process idles one time
slice and then the probabilistic choice is resolved. Again, in the second time slice action a appears
with probability π and action b with probability 1 − π. To conclude, from the observational point
of view these processes behave in the same way, in the next time slice both of them execute a with
probability π and b with probability 1− π.

DRT2 and DCS3 express the relative timing approach. The time slice in which a certain action
is performed is relative to the time at which the preceding action is performed. In the discrete-time
setting with absolute timing these axioms are not valid [24].

5.2.2 Probabilistic process algebra with delayable actions
pBPA−

drt contains atomic actions that must be executed in the current time slice. If communication
between such atomic actions does not occur in the current time slice the system ends in deadlock,
provided there is no other alternative of course. Obviously, using the σrel operator the execution
of a process may be delayed but only for a finite and fixed number of time slices. In specification of
parallel systems usually communication is initiated by one of two processes that communicate and the
other process is supposed to be ready at any moment to complete the communication. For example,
in a communicating system Sender - Receiver, the Receiver should be always ready to accept a job
sent by the Sender. Thus the communication is controlled and initiated by the Sender and this process
can clearly be specified by undelayable atomic actions. The Receiver cannot be specified in pBPA−

drt
since no infinite sum is permitted. Therefore, we need more powerful syntax to handle these type of
processes.

In this section, we extend the signature by new constants denoted by a, b, c, ... which mean
intuitively “with probability 1 process a executes the atomic action a (or b or c) in an arbitrary time
slice and terminates after the execution” (axiom a = a + σrel(a)). We call these atomic actions
delayable. Correspondingly, we introduce the constant δ meaning delayable deadlock (livelock), the
process which with probability 1 can idle indefinitely, but nothing else (axiom δ = δ + σrel(δ)).

Thus, we obtain the Basic Probabilistic Process Algebra with discrete relative time and delayable
actions, pBPAdrt, with the signature that contains the constants and operators of pBPA−

drt and the new
constants: a for each a ∈ A (delayable atomic actions) and a special constant δ, δ /∈ A (delayable
deadlock). The axioms for the new constants are given in Table 5.3 (a ∈ Aδ). Together with the
axioms of pBPA−

drt, they make the axiomatization of pBPAdrt (Tables 3.1+5.1+5.2+5.3).

122 5.2. Basic process algebra

a = a+ σrel(a) RSPDA1

y = a+ σrel(y) ⇒ y = a RSPDA2
y = a · x + σrel(y) ⇒ y = a · x RSPDA3
z = z + z & y = a + νrel(z) + σrel(y) & y1 = νrel(z) + σrel(y1) ⇒ y = a+ y1 RSPDA4

z = z + z & y = a · x + νrel(z) + σrel(y) & y1 = νrel(z) + σrel(y1) ⇒ y = a · x + y1 RSPDA5

Table 5.3: Axioms for delayable actions and processes.

Among the axioms in Table 5.3 only one, RSPDA1, is given as an equality. It expresses that
delayable a behaves like a but it can also postpone its activities for an arbitrary number of time
steps after which it has the same behaviour. The other conditional axioms for delayable processes
in Table 5.3 enable the derivation of certain equalities that cannot be derived from the axioms of
pBPA−

drt+RSPDA1. AxiomsRSPDA2 and RSPDA3 give the general form of the terms considered
equal to a and a · t respectively. Axioms RSPDA4 and RSPDA5 are used to derive equalities
between more complex terms as shown by the following example.

Example 5.2.1. By this example we show the need of axioms RSPDA1−RSPDA5. First, we will
prove that pBPAdrt ` a+a = a. pBPAdrt ` a+a = (a+σrel(a))+(a+σrel(a)) = (a+a)+σrel(a+a) =
a+ σrel(a + a) and from RSPDA2 we obtain pBPAdrt ` a + a = a;

Next, assume that z is a closed pBPAdrt term such that z = z + z and let x, y and w be defined as:
x = a + νrel(z) + σrel(x), y = b + σrel(y) and w = a + b + νrel(z) + σrel(w). Informally, x denotes
a process that at any moment can behave like a or νrel(z). y is a process that can execute b at any
moment. w is process that at any time slice can either execute a, b or it behaves like z. Clearly, w
should be equal to x+y. But using the axioms of pBPA−

drt we cannot prove that w = x+y. In pBPAdrt

we have: w = a+ b+νrel(z)+σrel(w)
A1
= b+a+νrel(z)+σrel(w) and since x = a+νrel(z)+σrel(x) it

follows from RSPDA4 that w = b+x. From RSPDA1 it follows that y = b from which w = x+y.
�

Compared with the previous work on ACP-like discrete-time process algebras [20, 108, 24] we
have introduced here delayable atomic actions only, like in [19], but not additional operators meant to
generalize the concept of delayable actions over more complex processes (for instance, the unbounded
delayable time operator or the iterated delay operator used in the discrete time extensions of ACP men-
tioned above). Thus, while pBPA−

drt is an extension of BPA−
drt−ID in [108] with probabilities, pBPAdrt

does not make an extension of BPAdrt − ID1 [108] although they both deal with delayable processes.
The difference is the definition of delayable processes. While [108] besides delayable actions uses
the unbounded delay operator to define delayable processes in a more general sense, here we have
only delayable action and more complex delayable processes are defined by conditional axioms. We
do so in order to obtain a simpler process algebra. Combining the probabilistic choice operator and
the operator used in the cited literature leads to a much more complicated axiomatization2.

1Here, we use a shorter notation, that is, we omit the extension −ID since it does not have any meaning in our
setting. In [108] a constant denoting a catastrophic (immediate) deadlock is introduced, and the extension −ID denotes
the absence of that constant in the considered algebra.

2For example one problem which appears is: how to apply this operator on a tπb and what is the meaning of that
process. In other words, we cannot introduce the unbounded delay operator in the signature because we do not have a
clear interpretation of applying it to probabilistic processes. It brings us to a similar situation as the one described in
Example 5.2.2

Chapter 5. Probabilistic process algebra with time 123

By the next example we clarify the reason of adding the condition z = z + z in the conditional
axioms.

Example 5.2.2. Let x be such that x = (a tπb) + σrel(x) holds. From this equation we can derive:
x = (a tπb) + σrel((a tπb) + σrel(x)) = (a tπb) + σrel(a tπb) + σ2

rel(x))

=
(

(a+ σrel(a)) tπ2(b + σrel(a)) t(1−π)·π(a+ σrel(b)) tπ·(1−π)(b+ σrel(b))
)

+ σ2
rel(x) = . . .

and if we go further on by each step we get more summands for which PrAC5 can be applied. Since
this procedure of “unwinding” x is infinite, by each step new summands are added to the alternative
compositions inside the brackets. This leads to an infinite sum which we do not permit. But also it
expresses that x is a process with probability distribution over an infinite set of processes which lies
beyond our restrictions. �

5.2.3 Properties of pBPAdrt

In this section, we present several properties of pBPAdrt. First we define the set of basic terms of
this algebra in a similar way as we did for pBPA. Then, we show that using the axioms every basic
term can be rewritten into a term with a special form. These forms will be used in the proof of the
elimination property. We remark that Proposition 3.2.14 and 3.2.15 remain valid in pBPAdrt.

Basic terms

Next we define the set of basic terms in pBPAdrt. Later we prove the elimination property which
expresses that every closed term is equal to a basic term.

Definition 5.2.3. The set of basic terms of pBPAdrt, B(pBPAdrt), is defined inductively, with the help
of an intermediary set B+(pBPAdrt) ⊆ B(pBPAdrt) in a similar way as was done in the definition of
basic terms of pBPA.

1. A ∪ {δ} ⊆ B+(pBPAdrt) ⊂ B(pBPAdrt);

2. A ∪ {δ} ⊆ B+(pBPAdrt) ⊂ B(pBPAdrt);

3. a ∈ A, t ∈ B(pBPAdrt)⇒ a · t, a · t ∈ B+(pBPAdrt);

4. t, s ∈ B+(pBPAdrt)⇒ t+ s ∈ B+(pBPAdrt);

5. t ∈ B+(pBPAdrt)⇒ σrel(t) ∈ B+(pBPAdrt);

6. t, s ∈ B(pBPAdrt)⇒ t tπs ∈ B(pBPAdrt) for every π ∈ 〈0, 1〉.

Remark 5.2.4. If we consider terms that only differ in the order of the summands to be identical (i.e.
we work modulo axioms A1, A2, PrAC1 and PrAC2) the basic terms are exactly the terms of the
form:

x ∈ B+ and x ≡
∑

j<l

aj · tj +
∑

k<m

bk +
∑

u<v

cu · ru +
∑

w<z

dw +
∑

o<p

σrel(so) or (5.1)

x ≡ x1 tπ1x2 tπ2x3 . . . xn−1 tπn−1xn and n > 1 (5.2)

where xi ≡
∑

j<li

aij · tij +
∑

k<mi

bik +
∑

u<vi

ciu · riu +
∑

w<zi

diw +
∑

o<pi

σrel(sio) for certain aj, bk, cu, dw,

aij, bik, ciu, diw ∈ Aδ, tj, ru, tij, riu ∈ B(pBPAdrt), so, sio ∈ B+(pBPAdrt) and n, m, l, v, z, p, mi, li,
vi, zi, pi ∈ IN .

124 5.2. Basic process algebra

For pBPAdrt we define a set of special closed terms D(pBPAdrt) that represent the trivial proba-
bilistic processes.

Definition 5.2.5. SP(pBPAdrt) will denote the set of all closed terms over the signature of pBPAdrt.
An auxiliary set of closed terms D(pBPAdrt) ⊂ SP(pBPAdrt) is defined as follows:

1. A
δ
⊆ D(pBPAdrt);

2. Aδ ⊆ D(pBPAdrt);

3. s ∈ D(pBPAdrt), t ∈ SP(pBPAdrt)⇒ s · t ∈ D(pBPAdrt);

4. s, t ∈ D(pBPAdrt)⇒ s+ t ∈ D(pBPAdrt);

5. s ∈ D(pBPAdrt)⇒ σrel(s), νrel(s) ∈ D(pBPAdrt).

Remark 5.2.6. The terms in D(pBPAdrt) are of the form:
∑

i<m

si·ti+
∑

j<n

aj+
∑

k<p

bk+
∑

l<q

σrel(ol)+
∑

g<w

νrel(rg) for some n,m, p, q, w ∈ IN , aj, bk ∈ Aδ,D(pBPAdrt)

terms si, ol, rg and SP(pBPAdrt) terms ti. Moreover, B+(pBPAdrt) ⊂ D(pBPAdrt).

For the basic terms the following properties hold. They will be used later on in the proof of the
Elimination theorem of pACP+

drt in Section 5.4.

Proposition 5.2.7. If t ∈ B+(pBPAdrt), then either pBPAdrt ` t = νrel(s) + σrel(r) or pBPAdrt ` t =
νrel(s) for some s, r ∈ B+(pBPAdrt). (This property is more general, namely it may be proved valid
for all D(pBPAdrt) terms.)

Proof. It is easy to prove the claim using induction on the structure of basic B+(pBPAdrt) terms.
�

Proposition 5.2.8. If p ∈ B(pBPAdrt) \ B+(pBPAdrt), then
pBPAdrt ` p = νrel(s1 tπ1s2 tπ2 . . . sn−1 tπnsn) tρ

(

(νrel(r1) + σrel(u1)) tα1 (νrel(r2) + σrel(u2)) tα2 . . .

(νrel(rm−1) + σrel(um−1)) tαm−1(νrel(rm) + σrel(um))
)

, or

pBPAdrt ` p =
(

(νrel(r1) + σrel(u1)) tα1 (νrel(r2) + σrel(u2)) tα2 . . .

(νrel(rm−1) + σrel(um−1)) tαm−1(νrel(rm) + σrel(um))
)

, or
pBPAdrt ` p = νrel(s1 tπ1s2 tπ2 . . . sn−1 tπnsn),

for some n,m ∈ IN and some si, rj, uj ∈ B+(pBPAdrt), ρ, πi, αj ∈ 〈0, 1〉, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Proof. It can be easily proved using induction on the number of tρ operators in p and using Propo-
sition 5.2.7. �

Proposition 5.2.9. pBPAdrt ` s = s+ s, for s ∈ D(pBPAdrt).

Proof. Part of the proof about the operators of pBPA is exactly the same as the proof of Proposition
3.2.17. The other inductive steps are trivial except the case a = a+a which is considered in Example
5.2.1. �

Chapter 5. Probabilistic process algebra with time 125

Elimination property of pBPAdrt The Elimination theorem expresses that every closed pBPAdrt
term is equal to a basic pBPAdrt term. In order to prove this property we employ the method of
lexicographic path ordering described in Section 2.3.

Lemma 5.2.10. The term rewrite system consisting of the rules in Table 3.5 without the rule RA7
and the rules shown in Table 5.4 (π ∈ 〈0, 1〉) is strongly normalizing.

δ · x → δ RDRT4

σrel(x) · y → σrel(x · y) RDRT2
νrel(a) → a RDCS1
νrel(a) → a RDCS1′

νrel(x + y) → νrel(x) + νrel(y) RDCS2
νrel(x · y) → νrel(x) · y RDCS3
νrel(σrel(x)) → δ RDCS4
σrel(x tπy) → σrel(x) tπσrel(y) RPrDRT1
νrel(x tπy) → νrel(x) tπνrel(y) RPrDCS1

Table 5.4: Additional rules for the term rewrite system of pBPAdrt.

Proof. We use the method of the lexicographical path ordering with the following ordering on the
signature of pBPA−

drt: νrel > · > + > tπ and · > σrel and we give the symbol · the lexicographical
status for the first argument. Then for each rewrite rule p → q in Table 5.4 we can easily prove that
p >lpo q. From Theorem 2.3.4 we obtain that the given term rewrite system is strongly normalizing.

�

Lemma 5.2.11. The normal forms of closed pBPAdrt terms are basic pBPAdrt terms.

Proof. Suppose that p is a normal form of some closed pBPAdrt term and suppose that p is not a basic
term. Let p′ denotes the smallest sub-term of p which is not a basic term. Then we can prove that
p is not a normal form. We use the fact that each sub-term of p′ is a basic term. We distinguish all
possible cases:

Case p′ ≡ a or p′ ≡ a, a ∈ Aδ. p′ is a basic term, which is in a contradiction with the assumption. So
this case does not occur.

Case p′ ≡ p1 · p2. By case analysis on the structure of basic term p1 we have:

Subcase p1 ≡ a or p1 ≡ a, a ∈ Aδ. In this case p′ would be a basic term, which contradicts the
assumption that p′ is not a basic term;

Subcase p1 ≡ a · p′1 or p1 ≡ a · p′1, a ∈ Aδ. Rewriting rule RA5 can be applied. So, p is not a
normal form;

Subcase p1 ≡ p′1 + p′′1. Rewriting rule RA4 can be applied. So, p is not a normal form;

Subcase p1 ≡ p′1 tπp
′′
1 . Rewriting rule RPAC4 can be applied. So, p is not a normal form;

Subcase p1 ≡ σrel(p
′
1). Rewriting rule RDRT2 can be applied. So, p is not a normal form.

126 5.2. Basic process algebra

Case p′ ≡ p1 + p2. By case analysis on the structure of both terms p1 and p2 we obtain:

Subcase both p1 and p2 are basic terms from B+. p′ would be a basic term, which contradicts
the assumption that p′ is not a basic term;

Subcase p1 ≡ p′1 tπp
′′
1 or p2 ≡ p′2 tσp

′′
2. Rewriting ruleRPAC5 orRPAC5′ is applicable. So

p is not a normal form.

Case p′ ≡ p1 tπp2. p′ would be a basic term which is in contradiction with the assumption that p′ is
not a basic term.

Case p′ ≡ σrel(p1). The following subcases are possible:

Subcase p1 ∈ B+. p′ would be a basic term, which contradicts the assumption that p′ is not a
basic term;

Subcase p1 ≡ p′1 tπp
′′
1 . Rewriting rule RPrDRT1 can be applied and so, p is not a normal

form;

Case p′ ≡ νrel(p1). By case analysis on the structure of basic term p1 we have:

Subcase p1 ≡ a, a ∈ Aδ. rewriting rule RDCS1 can be applied. So, p is not a normal form;

Subcase p1 ≡ a, a ∈ Aδ. Rewriting rule RDCS1 can be applied. So, p is not a normal form;

Subcase p1 ≡ a · p′1 or p1 ≡ a · p′1, a ∈ A. Rewriting rule RDCS3 can be applied. So, p is not
a normal form;

Subcase p1 ≡ p′1 + p′′1. Rewriting rule RDCS2 can be applied. So, p is not a normal form;

Subcase p1 ≡ p′1 tπp
′′
1 . Rewriting rule RPrDCS1 can be applied. So, p is not a normal form;

Subcase p1 ≡ σrel(p
′
1). Rewriting rule RDCS4 can be applied. So, p is not a normal form.

�

As a corollary of the previous two lemmas we obtain the following theorem:

Theorem 5.2.12 (Elimination theorem of pBPAdrt). Let p be a closed pBPAdrt term. Then there is a
basic pBPAdrt term q such that pBPAdrt ` p = q. �

Remark 5.2.13. If s is a closed D(pBPAdrt) term, then the associated basic term which exists by the
Elimination theorem is a term from the set B+(pBPAdrt).

We conclude this section with two properties of D(pBPAdrt) terms.

Proposition 5.2.14. If z1, z2 ∈ D(pBPAdrt) and y = νrel(z1)+νrel(z2)+σrel(y), y1 = νrel(z1)+σrel(y1)
and y2 = νrel(z2) + σrel(y2), then y = y1 + y2.

Proof. By the Elimination theorem we may consider, without loss of generality, only basic
B+(pBPAdrt) terms. The proof is given by induction on op(z1) + op(z2) and case distinction on
the structure of basic B+(pBPAdrt) term z1.

Case z1 ≡ a or z1 ≡ a, a ∈ Aδ. y1 = a + σrel(y1) and y = a+ νrel(z2) + σrel(y). (1)
From RSPDA2 we get y1 = a, and since y2 = νrel(z2)+σrel(y2) by applying RSPDA4 on (1)
we obtain y = a+ y2 = y1 + y2;

Chapter 5. Probabilistic process algebra with time 127

Case z1 ≡ a · t or z1 ≡ a · t, a ∈ Aδ. y1 = a · t + σrel(y1) and y = a · t + νrel(z2) + σrel(y). From
RSPDA5 we obtain y = a · t + y2 where y2 = νrel(z2) + σrel(y2). From RSPDA3 we obtain
y1 = a · t. Hence, y = y1 + y2;

Case z1 ≡ w′ + w′′. y = νrel(w
′) + νrel(w

′′) + νrel(z2) + σrel(y) and by the induction hypothesis for
y′1 = νrel(w

′) + σrel(y
′
1) and y′2 = νrel(w

′′) + νrel(z2) + σrel(y
′
2) we obtain that y = y′1 + y′2.

(The induction hypothesis is applicable because op(w′) + op(w′′) + op(z2) < op(z1) + op(z2).)
Furthermore, if we take y′′2 = νrel(w

′′) + σrel(y
′′
2) and since y2 = νrel(z2) + σrel(y2), (2)

by the induction hypothesis we obtain y ′2 = y′′2 + y2. Thus, y = y′1 + y′′2 + y2 and (2) hold for
y2. Moreover,
y′1 + y′′2 = νrel(w

′) + νrel(w
′′) + σrel(y

′
1) + σrel(y

′′
2) = νrel(w

′ + w′′) + σrel(y
′
1 + y′′2) = νrel(z1) +

σrel(y
′
1 + y′′2). Taking y1 ≡ y′1 + y′′2 we obtain y1 = νrel(z1) + σrel(y1). In conclusion we obtain

that y = y1 + y2 for y1 = νrel(z1) + σrel(y1) and y2 = νrel(z2) + σrel(y2);

Case z1 ≡ σrel(w). νrel(z1) = δ and y = δ + νrel(z2) + σrel(y). By axiom RSPDA4 we obtain
y = δ + y2 for y2 = νrel(z2) + σrel(y2). For y1 = νrel(z1) + σrel(y1), by axiom RSPDA2 we
obtain y1 = δ. Thus, y = y1 + y2.

�

Proposition 5.2.15. If z ∈ D(pBPAdrt) and y = νrel(z)+σrel(y) and w = νrel(z)+σrel(w) then y = w.

Proof. Using the Elimination theorem we can assume that z is a B+(pBPAdrt) term. The proposition
is proved by case distinction on the structure of z.

Case z ≡ a or z ≡ a for a ∈ Aδ. νrel(z) = a and y = a + σrel(y) and w = a + σrel(w). Using
RSPDA2 axiom we obtain y = a = w;

Case z ≡ a · t or z ≡ a · t for a ∈ Aδ. νrel(z) = a · t and y = a · t + σrel(y) and w = a · t + σrel(w).
Using RSPDA3 axiom we obtain y = a · t = w;

Case z ≡ z1 + z2. νrel(z) = νrel(z1) + νrel(z2) and
y = νrel(z1) + νrel(z2) + σrel(y) and w = νrel(z1) + νrel(z2) + σrel(w). By Proposition 5.2.14
we obtain y = u1 + u2 where u1 = νrel(z1) + σrel(u1) and u2 = νrel(z2) + σrel(u2). And also
w = v1 + v2 where v1 = νrel(z1) + σrel(v1) and u2 = νrel(v2) + σrel(v2). Then, by the induction
hypothesis we have u1 = v1 and u2 = v2. Finally, y = u1 + u2 = v1 + v2 = w;

Case z ≡ σrel(z1). νrel(z) = δ and y = δ + σrel(y) and w = δ + σrel(w). By axiom RSPDA2 we
obtain y = δ = w.

�

5.3 Structural operational semantics of pBPAdrt

The operational semantics consists of the following types of transition (deduction) rules: rules for
probabilistic transition: ; (which are unlabelled), rules for action transitions: a→, rules for action
termination a→√ (for a ∈ A), rules for time transition: σ→ and rules for the D predicate.

The D predicate characterizes those processes that have a sub-process that can be postponed
for two time slices. This predicate is necessary to define the operational semantics of the parallel
composition operator in the next section. There it will be discussed in more detail.

128 5.3. Operational semantics

As we have mentioned already, the passage of time cannot resolve a probabilistic choice. In
the algebra we have axiom PrDRT1 which makes terms σrel(a t0.5b) and σrel(a) t0.5σrel(b) to be
considered equal. Hence, in the bisimulation model the interpretations of these two terms have to be
bisimilar. This requirement can be met in at least two ways. The first option is if these two terms
have two different operational interpretations. The most intuitive interpretation of these processes is
given in Figure 5.1. In order to make them bisimilar we have to change the definition of bisimulation
relation in a way that it would relate these processes, which means a complex and non-intuitive
definition. Also a lot of deduction rules have to be added in order to cover all sequences which only
differ in the order of ; and σ→’s. This approach is not appropriate for technical reasons as well.
Namely, without any constraints about the order of ; and σ→ transitions the formulation of many
propositions, and moreover their proofs, are difficult and unclear. Thus, we come up with another
idea to interpret these two terms by the same process. In this way, we obtain simple deduction rules
of the operational semantics that guarantee some useful properties about the order in which ; and σ→
transitions appear.

We only present the bisimulation model of pBPAdrt and the model of pBPA−
drt can easily be derived

from the given one.

1
2

1
2

σσ

b
a b

σ

1
2

1
2

a

Figure 5.1: Transition systems of two processes

5.3.1 Model of pBPAdrt and properties of the model
Like in the untimed probabilistic process algebras in Chapters 3 and 4 the operational semantics of
pBPAdrt is based on the alternating model. Namely, every probabilistic transition is followed by action
transitions which may be delayed for an arbitrary number of time slices. An action transition can be
an action termination or it is followed by a probabilistic transition.

The Operational semantics of pBPAdrt is defined by the term-deduction system TpBPAdrt
=

(

Σ̆pBPAdrt
,DRpBPAdrt

)

with Σ̆pBPAdrt
= (A

δ
∪Ă

δ
∪Aδ∪Ăδ,+, ·, tπ, σrel, νrel) and with the deduction rules

shown in Table 5.5+ 5.6+5.7+5.8. With PRA replaced by pBPAdrt the items 1, 3-5 in Definition 3.3.2
(on page 49) together with the added ones in Definition 5.3.1 (according to the 7th item in Definition
3.3.2) define the set of static processes SP(pBPAdrt); the items 1-3 in Definition 3.3.3 (on page 49)
together with 1’, 5.4 and 5.5 in Definition 5.3.2 define the set of trivial static processes D(pBPAdrt);
the items 1-3 in Definition 3.3.4 (on page 50) together with 1’, 5.4 and 5.5 in Definition 5.3.3 define
the set of dynamic processes, DP(pBPAdrt); the PDF function µ on PT(pBPAdrt) is defined by Defi-
nition 5.3.4 and the probabilistic bisimulation relation on PT(pBPAdrt) is defined by Definition 5.3.5.
In contrast to the previous chapters here we enumerate the deduction rules. This is because through
this chapter we refer to different rules many times. The enumeration is given by the order the rules
occur in the thesis.

Definition 5.3.1.

Chapter 5. Probabilistic process algebra with time 129

1’. A
δ
⊆ SP(pBPAdrt);

7.4. if s ∈ SP(pBPAdrt), then σrel(s) ∈ SP(pBPAdrt);

7.5 if s ∈ SP(pBPAdrt), then νrel(s) ∈ SP(pBPAdrt).

Definition 5.3.2.

1’. A
δ
⊆ D(pBPAdrt);

5.4. if s ∈ D(pBPAdrt), then σrel(s) ∈ D(pBPAdrt);

5.5. if s ∈ D(pBPAdrt), then νrel(s) ∈ D(pBPAdrt).

Definition 5.3.3.

1’. ϕ(a) = ϕ(a);

5.4. ϕ(σrel(s)) = σrel(ϕ(s));

5.5. ϕ(νrel(s)) = νrel(ϕ(s)).

Definition 5.3.4. (PDF for pBPAdrt) A probability distribution function on PT(pBPAdrt) is defined by
the equalities in Table 3.6, 3.7 and 5.9.

R1.1 : a ; ă R1.2 : δ ; δ̆ R1.3 : a ; ă R1.4 : δ ; δ̆

R21 :
x ; x′

σrel(x) ; σrel(x
′)

R22 :
x ; x′

νrel(x) ; νrel(x
′)

R13 :
x ; x′

x · y ; x′ · y
R14 :

x ; x′, y ; y′

x + y ; x′ + y′
R15 :

x ; z

x tπy ; z, y tπx ; z

Table 5.5: Probabilistic transitions in pBPAdrt.

Definition 5.3.5. Let R be an equivalence relation on the set of processes PT(pBPAdrt). R is a
probabilistic bisimulation if:

1. if (p, q) ∈ R and p ; s, then there is a term t such that q ; t and (s, t) ∈ R;

2. if (s, t) ∈ R and s a→ p for some a ∈ A, then there is a term q such that t a→ q and (p, q) ∈ R;

3. if (s, t) ∈ R and s a→ √, then t a→√;

4. if (s, t) ∈ R and s σ→ p, then there is a term q such that t σ→ q and (p, q) ∈ R;

130 5.3. Operational semantics

R1.5 : ă
a→√ R1.6 : ă

a→√ R23 :
x

a→ x′

νrel(x)
a→ x′

R24 :
x

a→ √

νrel(x)
a→√

R2 :
x

a→ x′

x · y a→ x′ · y
R3 :

x
a→√

x · y a→ y

R4 :
x

a→ x′

x + y
a→ x′, y + x

a→ x′
R5 :

x
a→√

x+ y
a→√, y + x

a→√

Table 5.6: Action transitions in pBPAdrt.

R1.7 : ă
σ→ ă R1.8 : δ̆

σ→ δ̆ R25 :
x 6;

σrel(x)
σ→ x

R26 :
x

σ→ x′, y 6 σ→
x + y

σ→ x′, y + x
σ→ x′

R27 :
x

σ→ x′, y
σ→ y′

x + y
σ→ x′ + y′

R28 :
x

σ→ x′

x · y σ→ x′ · y

Table 5.7: Rules for time transitions.

5. if (s, t) ∈ R and D(s), then D(t);

6. if (p, q) ∈ R, then µ(p,M) = µ(q,M) for each M ∈ PT(pBPAdrt)/R.

We say that p is probabilistically bisimilar to q, denote p↔ q, if there is a probabilistic bisimula-
tion R such that (p, q) ∈ R.

Intuitively, by ă we denote a process that can successfully terminate by executing a within the
current time slice. By δ̆ we denote a process that can neither execute any action nor can idle till the
next times slice. ă is like ă but it may delay its execution for an arbitrary number of time slices. And
δ̆ can idle indefinitely, but nothing else. These are all dynamic processes and they cannot perform a
probabilistic transition. Informally, these constants can be viewed as a, δ, a and δ, respectively, from
non-probabilistic discrete time process algebras.

The D predicate is not essential in the operational semantics of pBPAdrt and it can be expressed by
means of the other transition relations (see Proposition 5.3.14 and 5.3.15). It selects those processes

R1.9 : D(a) R1.10 : D(ă) R29 : D(σrel(x))

R30 :
D(x)

D(x · y)
R31 :

D(x)

D(x+ y),D(y + x)
R32 :

D(x)

D(x tπy),D(y tπx)

Table 5.8: Deduction rules for predicate D.

Chapter 5. Probabilistic process algebra with time 131

µ(a, ă) = 1

µ(δ, δ̆) = 1
µ(σrel(x), σrel(x

′)) = µ(x, x′)
µ(νrel(x), νrel(x

′)) = µ(x, x′)

Table 5.9: Equalities that defined PDF’s for pBPAdrt (part 3)

from DP(pBPAdrt) that can do a time step, and processes from SP(pBPAdrt) that with positive proba-
bility reach a process which can perform a time step. To simplify, it contains all processes which are
still active (can still do a transition) after one time tick. By this, it become clear why it is D(a) and
D(ă) but not D(a) or D(ă). The D predicate is added to the semantics because it plays an important
role in the definition of deduction rules for parallel composition defined in the next section. More
details can be found on pg. 155.

Another rule which needs some explanation is R25. As we explained in the introduction by the
processes shown in Figure 5.1 we do not allow a process to perform a time transition before it resolves
its probabilistic choice. The negative premise expresses this exactly.

The remainder of the section will be used to present certain properties of transitions in TpBPAdrt

and the PDF function on PT(pBPAdrt). Again, many properties given here have been already proved
in Chapter 3 for pBPA and its model. In order to avoid repeating the proofs that already appear in that
chapter (they remain valid in TpBPAdrt

), here we mainly focus on the new operators added to pBPA to
obtain pBPAdrt, and even more we skip proofs which are trivial.

Proposition 5.3.6. The PDF function µ is well defined on PT(pBPAdrt).

Proof. Continuation of the proof of Proposition 3.3.18. The first part of the proof is to show that µ is
well defined on SP(pBPAdrt). Later, for DP(pBPAdrt) processes we prove that the value of µ equals 0.

Case p ≡ a, a ∈ Aδ. For any u, µ(a, u) =

{

1, if u ≡ ă
0, otherwise

. Hence, µ(a, u) is defined.

Case p ≡ σrel(q). For any u, µ(σrel(p), u) =

{

µ(q, v), if u ≡ σrel(v)
0, otherwise

.

Since µ(q, v) is defined by the induction hypothesis, µ(σrel(q), u) is defined as well.

Case p ≡ νrel(q). For any u, µ(νrel(p), u) =

{

µ(q, v), if u ≡ νrel(v)
0, otherwise

.

Since µ(q, v) is defined by the induction hypothesis, µ(νrel(q), u) is defined as well.

Let be p ∈ DP(pBPAdrt). We prove that µ(p, u) = 0.

Case p ≡ ă, a ∈ Aδ. By the definition of the PDF µ(ă, u) = 0 for any u.

Case p ≡ σrel(q). µ(σrel(q), u) =

{

µ(q, v), if u ≡ σrel(v)
0, otherwise

.

Since µ(q, v) = 0 by the induction hypothesis, it follows that µ(σrel(q), u) = 0 for any u.

132 5.3. Operational semantics

Case p ≡ νrel(q). µ(νrel(q), u) =

{

µ(q, v), if u ≡ νrel(v)
0, otherwise

.

Since µ(q, v) = 0 by the induction hypothesis, µ(νrel(q), u) = 0 for any u.
�

Proposition 5.3.7. The cPDF function µ is well defined on PT(pBPAdrt).

Proof. Continuation of the proof of Proposition 3.3.20

Case p ≡ a, a ∈ Aδ. µ(a,M) =
∑

x∈M

µ(a, x) =

{

1, ă ∈M
0, otherwise

.

Case p ≡ σrel(q). µ(σrel(q),M) =
∑

x∈M

µ(σrel(q), x) =
∑

x:x∈M&∃x′:x≡σrel(x
′)

µ(σrel(s), x) =

∑

x′:σrel(x
′)∈M

µ(s, x′) = µ(s, {x′ : σrel(x
′) ∈M}) ∈ [0, 1]

by the induction hypothesis.

Case p ≡ νrel(q). This case is similar to the previous case.
�

Proposition 5.3.8. Let be p ∈ SP(pBPAdrt) and K ⊆ PT(pBPAdrt). Then:

i. The equalities given in Proposition 3.3.21 are valid when pBPA + PR is replaced by pBPAdrt;

ii. µ(σrel(p), σrel(K)) = µ(p,K);

iii. µ(νrel(p), νrel(K)) = µ(p,K).

Proof. In a similar way like the proof of Proposition 4.3.7 iv. �

Alternation of probabilistic on one side and action and time transitions on the other side is guar-
anteed by the following propositions.

Proposition 5.3.9. If p ∈ SP(pBPAdrt) and p ; u, then u ∈ DP(pBPAdrt).

Proof. The proof is a continuation of the inductive proof of Proposition 3.3.22. Let us assume that
p ; u.

Case p ≡ a, a ∈ Aδ. a ; ă is the only possible probabilistic transition and ă ∈ DP(pBPAdrt);

Case p ≡ σrel(q). q ; v and u ≡ σrel(v). From the induction hypothesis v ∈ DP(pBPAdrt) and
u ∈ DP(pBPAdrt);

Case p ≡ νrel(q). The case is similar to the previous case.
�

Corollary 5.3.10.

i. If p is an SP(pBPAdrt) process and p ; σrel(x), then x ∈ DP(pBPAdrt).

ii. If p is an SP(pBPAdrt) process, then p 6 σ→.

Chapter 5. Probabilistic process algebra with time 133

�

Proposition 5.3.11. If u is a D(pBPAdrt) process, then the only possible probabilistic transition of u
is u ; ŭ.

Proof. The cases that needed to be added to the inductive proof of Proposition 3.3.24 are trivial.
�

Corollary 5.3.12.

i. If u, v are D(pBPAdrt) processes, then u ; v̆ iff u ≡ v.

ii. If p is an interpretation of a basic pBPAdrt term p and p ; x̆ for some x ∈ DP(pBPAdrt), then x
is the interpretation of the basic pBPAdrt term x. Moreover x ∈ B+(pBPAdrt). �

Proposition 5.3.13.

i. If u is a DP(pBPAdrt) process and u a→ p for some a ∈ A, then p ∈ SP(pBPAdrt).

ii. If u is a DP(pBPAdrt) process and u σ→ v, then v ∈ DP(pBPAdrt).

Proof. It is easy to prove by induction on the structure of DP(pBPAdrt) processes. �

In the sequel we show several properties that precisely describe the meaning of the D predicate.

Proposition 5.3.14. Let be u ∈ DP(pBPAdrt). D(u) iff ∃y : u
σ→ y.

Proof. The proof is given by induction on the structure of u.

Case u ≡ ă, a ∈ Aδ or u ≡ νrel(v). These cases do not occur;

Case u ≡ ă, a ∈ Aδ or u ≡ σrel(v). The result is straightforward;

Case u ≡ v + w. D(u) iff (D(v) or D(w)) iff (by the induction hypothesis) there is x such that
v

σ→ x or there is y such that w σ→ y iff (by the deduction rules) there is z such that u σ→ z;

Case u ≡ v · p. D(u) iff D(v) iff (by the induction hypothesis) there is x such that v σ→ x iff v · p σ→
x · p iff there is y such that u σ→ y.

�

Proposition 5.3.15. Let be p ∈ SP(pBPAdrt). D(p) iff ∃x, y : p ; x & x
σ→ y.

Proof. The proof is given by induction on the structure of p. We give each direction separately.
Let us assume that D(p).

Case p ≡ a, a ∈ Aδ or p ≡ σrel(q). The result is straightforward;

Case p ≡ q + r. D(q) or D(r). From the induction hypothesis there are x, y such that q ; x & x
σ→

y or there are z, w such that r ; z & z
σ→ w. If

Subcase q ; x & x
σ→ y and ∀z : (r ; z ⇒ z 6 σ→). p ; x + z

σ→ y;

134 5.3. Operational semantics

Subcase r ; z & z
σ→ w and ∀x : (q ; x⇒ x 6 σ→). p ; x + z

σ→ w;

Subcase q ; x & x
σ→ y and r ; z & z

σ→ w. p ; x+ z
σ→ y + w.

Case p ≡ q · r. Then D(q). From the induction hypothesis follows that there are u, v such that q ;

u & u
σ→ v. Therefore, p ; u · r and u · r σ→ v · r;

Case p ≡ q tπr. Then D(q) or D(r). From the induction hypothesis follows that there are x, y such
that q ; x & x

σ→ y or there are z, w such that r ; z & z
σ→ w. Therefore, either p ; x and

x
σ→ y or p ; z and z σ→ w.

Let us assume that there are x, y such that p ; x and x σ→ y.

Case p ≡ a, a ∈ Aδ or p ≡ σrel(q). The result is straightforward;

Case p ≡ q + r. Then q ; x′, r ; x′′, x ≡ x′ + x′′ and x′ + x′′
σ→ y. If

Subcase x′ σ→ y and x′′ 6 σ→. From the induction hypothesis follows that D(q) from which D(p)
as well;

Subcase x′′ σ→ y and x′ 6 σ→. From the induction hypothesis follows that D(r) from which D(p)
as well;

Subcase x′ σ→ y′, x′′ σ→ y′′ and y ≡ y′ + y′′. From the induction hypothesis follows that D(q)
and D(r) from which D(p) as well;

Case p ≡ q · r. q ; x′, x′ σ→ y′ and y ≡ y′ · r. From the induction hypothesis D(q) from which
D(p) as well;

Case p ≡ q tπr. q ; x & x
σ→ y or r ; z & z

σ→ w. Then either D(q) or D(r) but in both cases
D(p).

�

Definition 5.3.16. If M ⊆ PT(pBPAdrt), then D(M) iff D(m) for all m ∈M .

Corollary 5.3.17. If R is a bisimulation relation and M ∈ PT(pBPAdrt)/R, then D(M) iff there is
an element m ∈M such that D(m).

Proposition 5.3.18. Let be u ∈ DP(pBPAdrt) and u σ→ x and u σ→ y. Then x ≡ y.

Proof. The proof is given by the induction on the structure of u.

Case u ≡ ă, a ∈ Aδ or u ≡ νrel(v). Then u 6 σ→;

Case u ≡ ă, a ∈ Aδ or u ≡ σrel(v). By the definition of the operational rules the conclusion follows;

Case u ≡ v · q. By assumption u σ→ x and u
σ→ y we have that v σ→ x′ and v

σ→ y′ for some
x′, y′ ∈ DP(pBPAdrt) such that x ≡ x′ · q and y ≡ y′ · q. By the induction hypothesis we get
x′ ≡ y′ from which the conclusion follows;

Case u ≡ v + w. By assumption u σ→ x and u σ→ y we have:

Subcase v σ→ x′ and w σ→ x′′ and v σ→ y′ and w σ→ y′′. By the induction hypothesis we get
x′ ≡ y′ and x′′ ≡ y′′ from which x ≡ y;

Chapter 5. Probabilistic process algebra with time 135

Subcase w 6 σ→ and v σ→ x and v σ→ y. By the induction hypothesis x ≡ y;

Subcase v 6 σ→ and w σ→ x and w σ→ y. By the induction hypothesis x ≡ y.
�

Proposition 5.3.19. If u is a D(pBPAdrt) process, then µ(u, ŭ) = 1. �

Proposition 5.3.20. Let be p ∈ PT(pBPAdrt). Then µ(p, x) > 0 iff p ; x.

Proof. The proof is similar to the part of the proof of Proposition 3.3.28 that considers atomic actions
and the projection operator (as an unary operator whose definition resembles the ones of νrel and σrel).

�

Proposition 5.3.21. If p ∈ SP(pBPAdrt), then µ(p,PT(pBPAdrt)) = 1.

Proof. We just give the continuation of the inductive proof of Proposition 3.3.30.

Case p ≡ a, a ∈ Aδ. µ(a,DP(pBPAdrt)) =
∑

u∈ ��� (pBPAdrt)

µ(a, u) = µ(a, ă) = 1;

Case p ≡ σrel(q). Using Proposition 5.3.8 ii. and the induction hypothesis we obtain

µ(p,DP(pBPAdrt)) = µ(σrel(q), σrel(DP(pBPAdrt))) = µ(q,DP(pBPAdrt)) = 1.

Case p ≡ νrel(q). Using Proposition 5.3.8 iii. and the induction hypothesis we obtain

µ(p,DP(pBPAdrt)) = µ(νrel(q), νrel(DP(pBPAdrt))) = µ(q,DP(pBPAdrt)) = 1.
�

Corollary 5.3.22.

i. Let p ∈ PT(pBPAdrt) and M ⊆ PT(pBPAdrt). Then µ(p,M) > 0 iff ∃x ∈M : p ; x;

ii. If p ∈ SP(pBPAdrt) and u ∈ D(pBPAdrt) and µ(p, [ŭ]↔) = 1, then p↔ u.

iii. Proposition 3.3.32 is valid in PT(pBPAdrt).
�

Remark 5.3.23. Remark 3.3.34 (pg. 63) can be reformulated for pBPAdrt in the following way: from
Proposition 5.3.9 and 5.3.13 we conclude that we can simplify proofs by taking into account:

1. ;⊆ SP(pBPAdrt)× DP(pBPAdrt),

2. a→⊆ DP(pBPAdrt)× SP(pBPAdrt),

3. a→√ ⊆ DP(pBPAdrt),

4. σ→⊆ DP(pBPAdrt)× DP(pBPAdrt),

5. for every probabilistic bisimulation R on PT(pBPAdrt) we have R ⊆ SP(pBPAdrt) ×
SP(pBPAdrt) ∪ DP(pBPAdrt)× DP(pBPAdrt).

6. µ(p,M) = 0 if p ∈ SP(pBPAdrt) and M ⊆ SP(pBPAdrt). In any other case µ(p,M) ≥ 0. In
particular, if M is a bisimulation equivalence class then µ(p,M) ≥ 0 if p ∈ SP(pBPAdrt) and
M ⊆ DP(pBPAdrt).

136 5.3. Operational semantics

Furthermore, Remark 3.3.35 remains valid for the model of finite processes of pBPAdrt.

Proposition 5.3.24. Proposition 3.3.12 and 3.3.13 remain valid for the probabilistic bisimulation on
PT(pBPAdrt).

Theorem 5.3.25 (Congruence theorem of pBPAdrt). ↔ is a congruence relation on PT(pBPAdrt)
with respect to the +, ·, tπ , σrel and νrel operators.

Proof. For the proofs of the theorem concerning the operators of pBPA we refer to the proof of
Congruence theorem of pBPA. To extend these proofs from pBPA to pBPAdrt we have to check if the
related processes as defined in the proof match on σ-transitions and the D predicate. However, given
the fact that they can be easily checked, we will not give details. Moreover, from Proposition 3.3.13
we have that ↔ is an equivalence relation. It remains to prove that the probabilistic bisimulation is
preserved by the time operators: σrel and νrel.

The delay operator. Let x and y be PT(pBPAdrt) processes such that x ↔ y. So, there exist
probabilistic bisimulation R1 such that (x, y) ∈ R1. We define a relation R in the following way:

R = Eq(α ∪ β ∪ R1),
where

α = {(σrel(p), σrel(q)) : p, q ∈ SP(pBPAdrt), (p, q) ∈ R1},
β = {(σrel(u), σrel(v)) : u, v ∈ DP(pBPAdrt), (u, v) ∈ R1}.

Let us note that:

D1: α and β are equivalence relations; α and R1 contain pairs of static processes relevant to R;

D2: if (σrel(p), σrel(q)) ∈ α and K ∈ PT(pBPAdrt)/β, then σrel(p) ; K iff σrel(q) ; K;

D3: if σrel(p) ; K for K ∈ PT(pBPAdrt)/β, then K = [σrel(u)]β for some u such that p ; u.
Moreover, from the definition of β we have that K = σrel([u]R1);

D4: since R1 and β are subsets of R and they are equivalence relations themselves, if M ∈
DP(pBPAdrt)/R, then M =

⋃

i∈I

Mi and M =
⋃

j∈J

Kj for some non-empty index sets I and

J and for some equivalence classes Mi, i ∈ I and Kj, j ∈ J of R1 and β, respectively.

Now, suppose that (r, r1) ∈ R for some r, r1 ∈ SP(pBPAdrt) and M ∈ DP(pBPAdrt)/R. Then

1. if (r, r1) ∈ R1, having that µ(r,Mi) = µ(r1,Mi) for all i ∈ I using Proposition 3.3.9 ii. the
result follows.

2. if (r, r1) ∈ α, then r ≡ σrel(p), r1 ≡ σrel(q) for some p, q such that (p, q) ∈ R1. According to
D3 and D4, M =

⋃

j∈J

Kj and Kj = [σrel(uj)]β and p ; uj. Then from Proposition 5.3.8 ii. we

obtain:

µ(σrel(p), Kj) = µ(σrel(p), σrel([uj]R1)) = µ(p, [uj]R1) = µ(q, [uj]R1) =

µ(σrel(q), σrel([uj]R1)) = µ(σrel(q), Kj).

Finally, from Proposition 3.3.9 ii. follows that µ(r,M) = µ(r1,M).

Chapter 5. Probabilistic process algebra with time 137

The “now” operator. Let x and y be PT(pBPAdrt) processes such that x ↔ y. So, there exist
probabilistic bisimulation R1 such that (x, y) ∈ R1. We define a relation R in the following way:

R = Eq(α ∪ β ∪ R1),
where

α = {(νrel(p), νrel(q)) : p, q ∈ SP(pBPAdrt), (p, q) ∈ R1},
β = {(νrel(u), νrel(v)) : u, v ∈ DP(pBPAdrt), (u, v) ∈ R1}.

Let us note that:

NT1: α and β are equivalence relations; α and R1 contain pairs of static processes relevant to R;

NT2: if (νrel(p), νrel(q)) ∈ α and K ∈ PT(pBPAdrt)/β, then νrel(p) ; K iff νrel(q) ; K;

NT3: if νrel(p) ; K for K ∈ PT(pBPAdrt)/β, then K = [νrel(u)]β for some u such that p ; u.
Moreover, from the definition of β we have that K = νrel([u]R1);

NT4: since R1 and β are subsets of R and they are equivalence relations themselves, if M ∈
DP(pBPAdrt)/R, then M =

⋃

i∈I

Mi and M =
⋃

j∈J

Kj for some non-empty index sets I and

J and for some equivalence classes Mi, i ∈ I and Kj, j ∈ J of R1 and β, respectively.

The rest of the proof is similar to the proof of the σrel operator.
�

Towards Soundness of pBPAdrt For the axioms of pBPAdrt in the form of an equation the soundness
property is proved in the standard way: an equivalence relation is associated to the axiom for which
we have to show that processes related by this relation simulate each other on all transitions on the
value of the PDF function as well as on the D predicate. However, we will not show all details
of this part of the proof. The most interesting part certainly is the proof for the conditional axioms
RSPDA2−RSPDA5. For processes that satisfy z↔ z+ z we know from Section 4.3 that they can
reach only a single equivalence class. This result remains valid in pBPAdrt as well. Here we focus on
the second condition that appears in the above mentioned axioms. We will prove that if the “now” part
of one process y satisfies the condition z↔ z + z and the “delay” part is exactly y then the property
of z to reach only a single equivalence class passes on to process y.

Lemma 5.3.26. Let x be a PT(pBPAdrt) process such that x↔ x + x. Then if x ; x′ and x ; x′′

for some x′, x′′ ∈ DP(pBPAdrt), then x′↔ x′′.

Proof. See Lemma 4.3.17 (pg. 106). �

Lemma 5.3.27. Let y be an SP(pBPAdrt) process and y↔ νrel(z) + σrel(y) for some process z such
that z↔ z + z. And let y ; x1, y ; x2, . . ., y ; xn (n ≥ 1) be all possible probabilistic transitions
of y. Then for all i, j ∈ {1, 2, . . . , n}, xi↔ xj .

Proof. Since z↔ z+ z by Lemma 5.3.26 we can assume without loss of generality that z makes only
one probabilistic transition z ; u and µ(z, u) = 1 for some u ∈ DP(pBPAdrt). (1)
From the assumptions:

y ; x1, y ; x2, . . . , y ; xn

y↔ νrel(z) + σrel(y) (2)
it follows that

νrel(z) + σrel(y) ; νrel(u) + σrel(xi′), i
′ = 1, . . . n, (3)

138 5.3. Operational semantics

are all possible probabilistic transition of νrel(z) + σrel(y). Then from (2) and (3)
∀i : ∃i′ : xi↔ νrel(u) + σrel(xi′). (4)

If R is a bisimulation such that (y, νrel(z) + σrel(y)) ∈ R and ∀i : (xi, νrel(u) + σrel(xi′)) ∈ R
whose existence is guaranteed by (4), we define the following relation:

R′ = Eq
(

R ∪ {(xi, xj) | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
)

.

In order to prove thatR′ is a bisimulation it is sufficient to check pairs (xi, xj) because for the pairs
in R the result is straightforward. Moreover, since xi, xj ∈ DP(pBPAdrt) it is sufficient to investigate
action transitions and σ-transitions (see Remark 5.3.23). Let us assume that (xi, xj) ∈ R′. By (4)
there are i′, j ′ ∈ {1, . . . , n} such that

(xi, νrel(u) + σrel(xi′)) ∈ R ⊆ R′ (4i) and (xj, νrel(u) + σrel(xj′)) ∈ R ⊆ R′. (4j)

Action transition. If xi
a→ wi for some wi ∈ SP(pBPAdrt) then from (4i) follows that νrel(u)

a→ w

and from (4j) follows that xj
a→ wj for some w,wj ∈ SP(pBPAdrt) and (wi, w), (w,wj) ∈ R. Clearly,

(wi, wj) ∈ R ⊆ R′. We note that the assumption (1) is essential in this part, otherwise (4i) and (4j)
are uncertain.

Action termination. In a similar way we prove xi
a→√ iff xj

a→√.
σ-transitions. From (4i) and (4j) we have that there exist vi, vj ∈ DP(pBPAdrt) such that xi

σ→ vi

and xj
σ→ vj and (vi, xi′) ∈ R and (vj, xj′) ∈ R. Therefore, (vi, xi′) ∈ R′ and (vj, xj′) ∈ R′. Thus,

(xi′ , xj′) ∈ R′ from which (vi, vj) ∈ R′ (because of the symmetry and the transitivity of R′).
D predicate. D(xi) and D(xj) because D(σrel(xi′)) and D(σrel(xj′)).
PDF. We still need to check the values of the PDF over R′ equivalence classes. First note that

SP(pBPAdrt)×SP(pBPAdrt)∩R′ = SP(pBPAdrt)×SP(pBPAdrt)∩R, that is, (p, q) ∈ R iff (p, q) ∈ R′

for p, q ∈ SP(pBPAdrt). Second, from R ⊆ R′ we have that for every M ∈ DP(pBPAdrt)/R
′ there are

an index set I and equivalence classes Mi ∈ DP(pBPAdrt)/R, i ∈ I such that M =
⋃

i∈I

Mi. Thus, if

(p, q) ∈ R′ for some p, q ∈ SP(pBPAdrt), then (p, q) ∈ R and hence µ(p,Mi) = µ(q,Mi) for each
i ∈ I . The result µ(p,M) = µ(q,M) follows from Proposition 3.3.9. �

Corollary 5.3.28. If y is a process as it is defined in the previous lemma then ∀i : xi ↔ νrel(u) +
σrel(xi). �

Lemma 5.3.29. Let x, u ∈ DP(pBPAdrt) be such that x↔ νrel(u)+σrel(x) and letR be a probabilistic
bisimulation relation such that (x, νrel(u) + σrel(x)) ∈ R. Then for all processes t such that x σ

=⇒ t3

we have that (x, t) ∈ R.

Proof. The proof resembles the proof of Lemma 4.3.4.4 in [108]. �

Theorem 5.3.30 (Soundness of pBPAdrt). Let p and q be PT(pBPAdrt) processes. If pBPAdrt ` p = q

then p↔ q.

Proof. We only treat axioms added to pBPA to obtain pBPAdrt. The proofs about D predicate for the
axioms of pBPA (that we do not treat here) are trivial. The proofs for the σ-transitions of the omitted
axioms can easily be derived from the proof in [108] (Section 4.3, Theorem 4.3.1.4). For the same
reason we omit the parts about action transitions and σ-transitions for axioms DRTAA3, DRTA6−
7, DRT1− 2 and DCS1 − 4. For axioms PrAC1 − 5 σ-transitions do not need to be investigated
(provided by Remark 5.3.23).

3Relation σ
=⇒ is the reflexive and transitive closure of σ→ as defined in Section 2.3.

Chapter 5. Probabilistic process algebra with time 139

Axiom DRTAA3. We define a relation R in the following way:

R = Eq
(

{(a+ a, a),
(

ă + ă, ă
)

}
)

.

PDF. We only need to notice that µ(a + a,
[

ă
]

R
) = 1 = µ(a,

[

ă
]

R
), and µ(a + a,M) = 0 =

µ(a,M) for any other equivalence class M .

D predicate. ¬D(a+ a) and ¬D(a). ¬D(ă+ ă) and ¬D(ă).

Axiom DRTA6. We define a relation R in the following way:

R = Eq
(

{(p+ δ, p) : p ∈ SP(pBPAdrt)} ∪ {(u+ δ̆, u) : u ∈ DP(pBPAdrt)}
)

.

PDF. Since µ(p + δ, u + δ̆) = µ(p, u) and (u + δ̆ ∈ M iff u ∈ M), from Proposition 3.3.10
follows that µ(p+ δ,M) = µ(p,M) for each M ∈ DP(pBPAdrt)/R.

D predicate. Since ¬D(δ), D(p+ δ) iff D(p). And since ¬D(δ̆), D(u+ δ̆) iff D(u).

Axiom DRTA7. We define a relation R in the following way:

R = Eq
(

{(δ · p, δ) : p ∈ SP(pBPAdrt)} ∪ {(δ̆ · p, δ̆) : p ∈ SP(pBPAdrt)}
)

.

PDF. Since µ(δ · p, δ̆ · p) = µ(δ, δ̆) = 1 and [δ̆ · p]R = [δ̆]R it follows that µ(δ̆ · p, [δ̆ · p]R) =

µ(δ̆, [δ̆]R) = 1. For every other equivalence class M ∈ DP(pBPAdrt)/R, µ(δ̆ · p,M) =

µ(δ̆,M) = 0.

D predicate. ¬D(δ) and ¬D(δ · p). And also ¬D(δ̆) and ¬D(δ̆ · p)

Axiom DRT1. We define a relation R in the following way:

R = Eq
(

{(σrel(p+ q), σrel(p) + σrel(q)) : p, q ∈ SP(pBPAdrt)}
∪{(σrel(u+ v), σrel(u) + σrel(v)) : u, v ∈ DP(pBPAdrt)}

)

.

PDF. Suppose that (σrel(p + q), σrel(p) + σrel(q)) ∈ R for some p, q ∈ SP(pBPAdrt) and M ∈
DP(pBPAdrt)/R. Then, µ(σrel(p+ q), σrel(u+v)) = µ(p+ q, u+v) = µ(p, u) ·µ(q, v) and
µ(σrel(p)+σrel(q), σrel(u)+σrel(v)) = µ(σrel(p), σrel(u))·µ(σrel(q), σrel(v)) = µ(p, u)·µ(q, v).
From Proposition 3.3.10 we conclude that µ(σrel(p + q),M) = µ(σrel(p) + σrel(q),M) for
every equivalence class M .

D predicate. D(σrel(p+ q)) and D(σrel(p) + σrel(q)) for all p, q ∈ PT(pBPAdrt).

Axiom DRT2. We define a relation R in the following way:

R = Eq
(

{(σrel(p · q), σrel(p) · q) : p, q ∈ SP(pBPAdrt)}
∪{(σrel(u · q), σrel(u) · q) : u ∈ DP(pBPAdrt), q ∈ SP(pBPAdrt)}

)

.

140 5.3. Operational semantics

PDF. Suppose that (σrel(p · q), σrel(p) · q) ∈ R for some p, q ∈ SP(pBPAdrt) and M ∈
DP(pBPAdrt)/R. Then, µ(σrel(p · q), σrel(u · q)) = µ(p · q, u · q) = µ(p, u) and
µ(σrel(p) · q, σrel(u) · q) = µ(σrel(p), σrel(u)) = µ(p, u). The conclusion µ(σrel(p · q),M) =
µ(σrel(p) · q,M) follows from Proposition 3.3.10.

D predicate. D(σrel(p · q)) and D(σrel(p) · q) for all p, q ∈ PT(pBPAdrt).

Axiom PrDRT1. We define a relation R in the following way:

R = Eq
(

{(σrel(p tπq), σrel(p) tπσrel(q)) : p, q ∈ SP(pBPAdrt)}
)

.

PDF. Suppose that (σrel(p tπq), σrel(p) tπσrel(q)) ∈ R for some p, q ∈ SP(pBPAdrt) and M ∈
DP(pBPAdrt)/R. Then µ(σrel(p tπq), σrel(u)) = µ(p tπq, u) = π·µ(p, u)+(1−π)·µ(q, u)
and
µ(σrel(p) tπσrel(q), σrel(u)) = π · µ(σrel(p), σrel(u)) + (1 − π) · µ(σrel(q), σrel(u)) = π ·
µ(p, u) + (1 − π) · µ(q, u). The conclusion µ(σrel(p tπq),M) = µ(σrel(p) tπσrel(q),M)
follows from Proposition 3.3.10.

D predicate. D(σrel(p tπq)) and D(σrel(p) tπσrel(q)).

Axiom DCS1. We define a relation R in the following way:

R = Eq
(

{(νrel(a), a), (νrel(ă), ă)}
)

.

PDF. Since [νrel(ă)]R = [ă]R we obtain µ(νrel(a), νrel(ă)) = 1 = µ(a, ă). For any other equiva-
lence class M , we have µ(νrel(a),M) = 0 = µ(a,M).

D predicate. ¬D(νrel(a)) and ¬D(a). And also ¬D(νrel(ă)) and ¬D(ă).

Axiom DCS2. We define a relation R in the following way:

R = Eq
(

{(νrel(p + q), νrel(p) + νrel(q)) : p, q ∈ SP(pBPAdrt)}
∪{(νrel(u+ v), νrel(u) + νrel(v)) : u, v ∈ DP(pBPAdrt)}

)

.

PDF. Suppose that (νrel(p + q), νrel(p) + νrel(q)) ∈ R for some p, q ∈ SP(pBPAdrt) and
M ∈ DP(pBPAdrt)/R. Then, µ(νrel(p+q), νrel(u+v)) = µ(p+q, u+v) = µ(p, u)·µ(q, v)
and
µ(νrel(p) + νrel(q), νrel(u) + νrel(v)) = µ(νrel(p), νrel(u)) · µ(νrel(q), νrel(v)) = µ(p, u) ·
µ(q, v). Using Proposition 3.3.10 we conclude that µ(νrel(p + q),M) = µ(νrel(p) +
νrel(q),M).

D predicate. ¬D(νrel(p+ q)) and ¬D(νrel(p) + νrel(q)) for all p, q ∈ PT(pBPAdrt).

Axiom DCS3. We define a relation R in the following way:

R = Eq
(

{(νrel(p · q), νrel(p) · q) : p, q ∈ SP(pBPAdrt)}
∪{(νrel(u · q), νrel(u) · q) : u ∈ DP(pBPAdrt), q ∈ SP(pBPAdrt)}

)

.

Chapter 5. Probabilistic process algebra with time 141

PDF. Suppose that (νrel(p · q), νrel(p) · q) ∈ R for some p, q ∈ SP(pBPAdrt) and M ∈
DP(pBPAdrt)/R. Then,
µ(νrel(p · q), νrel(u · q)) = µ(p · q, u · q) = µ(p, u) and µ(νrel(p) · q, νrel(u) · q) =
µ(νrel(p), νrel(u)) = µ(p, u). The conclusion µ(νrel(p · q),M) = µ(νrel(p) · q,M) fol-
lows from Proposition 3.3.10.

D predicate. ¬D(νrel(p · q)) and ¬D(νrel(p) · q) for all p, q ∈ PT(pBPAdrt).

Axiom DCS4. We define a relation R in the following way:

R = Eq
(

{(νrel(σrel(p)), δ) : p ∈ SP(pBPAdrt)} ∪ {(νrel(σrel(u)), δ̆) : u ∈ DP(pBPAdrt)}
)

.

PDF. It is sufficient to notice that µ(δ,
[

δ̆
]

R
) = µ(δ, δ̆) = 1 and µ(νrel(σrel(p)),

[

δ̆
]

R
) =

µ(νrel(σrel(p)), {νrel(σrel(u)) : u ∈ DP(pBPAdrt)}) = 1. If M ∈ DP(pBPAdrt)/R,M 6=
[

δ̆
]

R
, then both µ(δ,M) = 0 and µ(νrel(σrel(p)),M) = 0.

D predicate. ¬D(νrel(σrel(p))) and ¬D(δ). And ¬D(νrel(σrel(u))) and ¬D(δ̆).

Axiom PrDCS1. We define a relation R in the following way:

R = Eq
(

{(νrel(p tπq), νrel(p) tπνrel(q)) : p, q ∈ SP(pBPAdrt)}
)

.

PDF. Suppose that (νrel(p tπq), νrel(p) tπνrel(q)) ∈ R for some p, q ∈ SP(pBPAdrt) and M ∈
DP(pBPAdrt)/R. Then, µ(νrel(p tπq), νrel(u)) = µ(p tπq, u) = π · µ(p, u) + (1 − π) ·
µ(q, v) and
µ(νrel(p) tπνrel(q), νrel(u)) = π · µ(νrel(p), νrel(u)) + (1− π) · µ(νrel(q), νrel(u))

= π · µ(p, u) + (1− π) · µ(q, u).
The conclusion µ(νrel(p tπq),M) = µ(νrel(p) tπνrel(q),M) follows from Proposition
3.3.10.

D predicate. ¬D(νrel(p tπq)) and ¬D(νrel(p) tπνrel(q)).

Axiom RSPDA1. We define a relation R in the following way:

R = Eq
(

{(a, a+ σrel(a)), (ă, ă+ σrel(ă))}
)

.

PDF. It is sufficient to notice that µ (a, [ă]R) = 1 = µ(a + σrel(a),
[

ă+ σrel(ă)
]

R
) and [ă]R =

[

ă+ σrel(ă)
]

R
.

D predicate. D(a) and D(σrel(a)) from which D(a+ σrel(a)) as well.

Axiom RSPDA2. Let us assume that y↔ a+σrel(y). Lemma 5.3.27 allows us to assume without loss
of generality that y makes only one probabilistic transition. Namely, there is x ∈ DP(pBPAdrt)
such that y ; x and µ(y, x) = 1 and x↔ ă + σrel(x). (2.1)
Let R be a probabilistic bisimulation such that
(y, a+ σrel(y)) ∈ R and (x, ă + σrel(x)) ∈ R. (2.2)
Then we define the following relation:

R′ = Eq
(

R ∪ {(y, a)} ∪ {(t, ă) | ∀t : x
σ

=⇒ t}
)

.

Note that (x, ă) ∈ R′. Moreover, (y, a) is the only new pair of static processes and (t, ă) are all
pairs of dynamic processes.

142 5.3. Operational semantics

PDF. For (y, a), since [x]R′ = [ă]R′ and µ(y, [x]R′) = 1 (from (2.1)) and µ(a, [ă]R′) = 1 (from
the definition) the result follows.
Now, let us consider the pair (t, ă) ∈ R′ where x σ

=⇒ t. By Lemma 5.3.29 we have
(x, t) ∈ R. (2.3)

Action termination. From (2.2) and (2.3) we obtain that x a→ √ and also t a→ √ are the only
possible action transitions of x and t respectively. Also, ă a→√.

σ-transitions. Clearly, ă σ→ ă. From (2.2) it follows that x makes a σ-transition. Therefore,
from (2.3) follows that t σ→ t′ for some t′ ∈ DP(pBPAdrt). Thus x σ

=⇒ t′. From the
definition of R′ we obtain (ă, t′) ∈ R′.

D predicate. D(a), and since D(σrel(y)) according to (2.2) we obtain D(y). Similarly, D(ă),
and since D(x) according to (2.2) and (2.3) we obtain D(t).

Axiom RSPDA3. The proof of this conditional axiom is similar to the previous proof. For this axiom
instead of action terminations we should consider action transitions.

Axiom RSPDA4. Let be y↔ a+ νrel(z) + σrel(y) and y1↔ νrel(z) + σrel(y1) and z↔ z + z. Lemma
5.3.27 and Lemma 4.3.17 allow us to assume without loss of generality that y, y1 and z make
only one probabilistic transition. This we assume that y ; x and µ(y, x) = 1, y1 ; x1

and µ(y1, x1) = 1, z ; u and µ(z, u) = 1 for some x, x1, z ∈ DP(pBPAdrt). Let R be a
probabilistic bisimulation such that:

(y, a+ νrel(z) + σrel(y)) ∈ R, (4.1) (x, ă+ νrel(u) + σrel(x)) ∈ R, (4.4)
(y1, νrel(z) + σrel(y1)) ∈ R, (4.2) (x1, νrel(u) + σrel(x1)) ∈ R, (4.5)
(z, z + z) ∈ R, (4.3) (u, u+ u) ∈ R. (4.6)

The existence of such a relation is guaranteed by the fact that all related processes are bisimilar.
Furthermore, from Lemma 5.3.29 we have that if x σ

=⇒ t and x1
σ

=⇒ t1, then

(x, t) ∈ R (4.7) and (x1, t1) ∈ R. (4.8)

We define the following relation:

R′ = Eq
(

R ∪ {(y, a+ y1)} ∪ {(t, ă+ t1) | ∀t, t1 : x
σ

=⇒ t & x1
σ

=⇒ t1}
)

.

Note that (x, a + x1) ∈ R′; (y, a + y1) is the only new pair of static processes; (t, ă + t1) are
pairs of dynamic processes.

Probabilistic transitions. For the pair (y, a + y1): from the definition of R′ we have [x]R′ =
[ă + x1]R′ . Thus we have µ(y, [x]R′) = 1 and µ(a + y1, [ă + x1]R′) = 1. For any other
equivalence class M we have µ(y,M) = 0 = µ(a+ y1,M).

Action transitions. For the pairs (t, ă+t1): Let (t, ă+t1) ∈ R′ and x σ
=⇒ t and x1

σ
=⇒ t1. And

let us assume that ă + t1
b→ r1 for some r1 ∈ SP(pBPAdrt). Then for some s1, o, s, r ∈

SP(pBPAdrt),

t1
b→ r1 (from the deduction rules), x1

b→ s1 and (r1, s1) ∈ R (from (4.8)),

νrel(u)
b→ o and (s1, o) ∈ R (from (4.5)),

x
b→ s and (o, s) ∈ R (from (4.4)),

t
b→ r and (s, r) ∈ R (from (4.7)).

Thus, if ă+ t1
b→ r1 then t b→ r and (r1, r) ∈ R ⊆ R′.

Chapter 5. Probabilistic process algebra with time 143

If t b→ r for some r ∈ SP(pBPAdrt), then for some s, o, s1, r1 ∈ SP(pBPAdrt),

x
b→ r and (r, s) ∈ R (from (4.7)),

νrel(u)
b→ o and (s, o) ∈ R (from (4.4)),

x1
b→ s1 and (o, s1) ∈ R (from (4.5)),

t1
b→ r1 and (s1, r1) ∈ R (from (4.8)), and ă + t1

b→ r1 (from the deduction rules).
Thus, if t b→ r then ă + t1

b→ r1 and (r, r1) ∈ R ⊆ R′.

Action termination. For the pairs (t, ă+ t1): If ă+ t1
b→√ then either b ≡ a in which case the

result follows from (4.4) and (4.7). Or t1
b→ √ and the result can be proven in a similar

way (with the same trace) as in the case of action transition.

If t b→ √ then from (4.7) we have x b→ √ and from (4.4) we have that either b ≡ a and
then ă + t1

a→ √ or νrel(u)
b→ √ in which case from (4.5) and (4.8) we obtain t1

b→ √

and ă+ t1
b→√ as well.

σ-transitions. For the pairs (t, ă+t1): From (4.8) and (4.5) we have that for certain s1, t1
σ→ s1.

Since ă σ→ ăwe obtain ă+t1
σ→ ă+s1. Moreover, x1

σ
=⇒ t1 and t1

σ→ s1 imply x1
σ

=⇒ s1.
On the other side, from (4.7) and (4.4) it follows that t σ→ s for some s. Thus x σ

=⇒ t
and t

σ→ s from which x
σ

=⇒ s. Finally, from the definition of R′ we conclude that
(s, ă+ s1) ∈ R′.

D predicate. D(a + y1), and from (4.1) follows that D(y). Similarly, D(ă + x1) and from
(4.4) and (4.7) we obtain D(t) as well.

Axiom RSPDA5. The proof of this conditional axiom is similar to the proof of RSPDA4. They differ
slightly in the part of the proof considering action transitions.

�

Completeness of pBPAdrt

To prove completeness for pBPAdrt with respect to the presented model MpBPAdrt
we use the direct

method. The proof is based on steps comparable to those in the proof of the completeness prop-
erty of pBPA in Section 3.3.3. Again we split the proof into two lemmas, one concerning the basic
B(pBPAdrt) \ B+(pBPAdrt) terms, and the other one concerning the basic B+(pBPAdrt) terms. The
completeness property of pBPAdrt follows easily from these lemmas.

Proposition 5.3.31. Proposition 3.3.27, 3.3.52, 3.3.56 Corollary 3.3.53, Lemma 3.3.54 remain valid
in pBPAdrt when pBPA is replaced by pBPAdrt.

Proposition 5.3.32. If x, y, z ∈ D(pBPAdrt), then z↔ x+ y implies z↔ x+ z.

Proof. Consider the following relation:

R′ = Eq
(

{(z, x + z)} ∪ {(v + u, u) : ∃w : (v + w, u) ∈ R & u, v, w ∈ DP(pBPAdrt)}
∪ {(v + u, u) : (v, u) ∈ R & u, v ∈ DP(pBPAdrt)} ∪ R

)

,

where R is a bisimulation relation such that (x+ y, z) ∈ R.

144 5.3. Operational semantics

Probabilistic transitions. As x, y, z ∈ D(pBPAdrt) from Proposition 5.3.11 we obtain that x ; x̆,
y ; y̆ and z ; z̆ are the only possible probabilistic transitions of x, y and z, respectively, with
µ(x, x̆) = 1, µ(y, y̆) = 1 and µ(z, z̆) = 1. Thus we have that the only possible probabilistic
transition of x+ z is x+ z ; x̆+ z̆ and µ(x+ z, x̆+ z̆) = 1. Moreover from (x+ y, z) ∈ R we
obtain easily that (x̆ + y̆, z̆) ∈ R from which by the definition of R′ we have (x̆+ z̆, z̆) ∈ R′.

Let us assume that (v + u, u) ∈ R′ for some u, v ∈ DP(pBPAdrt) and let w ∈ DP(pBPAdrt) such
that (v + w, u) ∈ R.

Action transitions. If u a→ p for some a ∈ A and p ∈ SP(pBPAdrt), then v + u
a→ p as well and

(p, p) ∈ R′. If v+u
a→ p and v a→ p for some a ∈ A and p ∈ SP(pBPAdrt), then v+w

a→ p and
therefore u a→ q for some q ∈ SP(pBPAdrt) such that (p, q) ∈ R which implies that (p, q) ∈ R′.

Action termination. If u a→√ for some a ∈ A, then v + u
a→ √. If v+ u

a→√ and v a→√ for some
a ∈ A, then v + w

a→√ from which u a→ √ as well.

σ-transitions. If u σ→ s for some s ∈ DP(pBPAdrt). Then v+w
σ→ r for some r such that (r, s) ∈ R.

The following situations are possible:

1. if v σ→ r and w 6 σ→ then v + u
σ→ r + s and (r + s, s) ∈ R′ since (r, s) ∈ R;

2. if v 6 σ→ and w σ→ r then v + u
σ→ s and (s, s) ∈ R′;

3. if v σ→ p and w
σ→ q for some p, q such that r ≡ p + q, then v + u

σ→ p + s and
(p+ s, s) ∈ R′ since there is q such that (p+ q, s) ∈ R.

If v+u
σ→ r for r ∈ DP(pBPAdrt), then either u σ→ r and v 6 σ→ and this case is trivial, or v σ→ p,

u
σ→ q and r ≡ p+ q. There are two cases:

1. if w σ→ s for some s, then v+w
σ→ p+s and (p+s, q) ∈ R and therefore, (p+q, q) ∈ R′;

2. if w 6 σ→, then v + w
σ→ p and (p, q) ∈ R and therefore, (p, q) ∈ R′.

Now, we investigate the pairs (v + u, u) ∈ R′ for some u, v ∈ DP(pBPAdrt) such that (v, u) ∈ R.

Action transitions. If u a→ p for some a ∈ A and p ∈ SP(pBPAdrt), then v + u
a→ p as well and

(p, p) ∈ R′. If v + u
a→ p and v a→ p for some a ∈ A and p ∈ SP(pBPAdrt), because (v, u) ∈ R

we have that u a→ q for some q such that (p, q) ∈ R which implies that (p, q) ∈ R′.

Action termination. Since (v, u) ∈ R it follows easily that v + u
a→√ iff u a→√ for some a ∈ A.

σ-transitions. If u σ→ s for some s ∈ DP(pBPAdrt), then v σ→ r for some r such that (r, s) ∈ R.
Therefore v + u

σ→ r + s and (r + s, s) ∈ R′ since (r, s) ∈ R. If v + u
σ→ s for some

s ∈ DP(pBPAdrt), then because (v, u) ∈ R it must be that both processes can perform σ-
transitions. Thus we have that v σ→ s′ and u σ→ s′′ for s′, s′′ such that s ≡ s′ + s′′. Finally, we
obtain u σ→ s′′ and (s′′, s) ∈ R′ because there is an s′ such that (s′′ + s′, s) ∈ R.

D predicate. The proof for the D predicate for all pairs in R′ is trivial.
�

Proposition 5.3.33. Let x be a D(pBPAdrt) process and a ∈ A. Then:

i. if x̆ a→√, then pBPAdrt ` x = a + x;

Chapter 5. Probabilistic process algebra with time 145

ii. if x̆ a→ x′, then pBPAdrt ` x = a · x′ + x and op(x′) < op(x);

iii. if x̆ 6 σ→, then pBPAdrt ` x = νrel(x);

iv. if x̆ 6 a→ for each a ∈ A, then pBPAdrt ` νrel(x) = δδδδδ;

v. if x̆ σ→ x̆′, then pBPAdrt ` x = σrel(x
′)+ νrel(x) and either x 6≡ x′ and op(y) < op(x) or x ≡ x′.

Proof. The proofs of i. and ii. are similar to the proof of Proposition 3.3.55.
iii. Let us suppose that x̆ 6 σ→. The Elimination theorem and the Soundness theorems allow us

to assume, without loss of generality, that x is a basic term. Moreover, x ∈ D(pBPAdrt) implies
x ∈ B+(pBPAdrt).

Case x ≡ a, a ∈ Aδ. The result follows from the axiom DCS1;

Case x ≡ a · x′, a ∈ Aδ. pBPAdrt ` νrel(x) = νrel(a · x′) = νrel(a) · x′ = a · x′ = x;

Case x ≡ y + z. From the assumption x̆ 6 σ→ it follows that both y̆ 6 σ→ and z̆ 6 σ→. By the induction
hypothesis we have that pBPAdrt ` y = νrel(y) and pBPAdrt ` z = νrel(z). Finally, we obtain:
pBPAdrt ` x = y + z = νrel(y) + νrel(z) = νrel(y + z) = νrel(x);

Case x ≡ a or x ≡ a · x′ or x ≡ σrel(x
′), a ∈ Aδ. This case does not apply because the assumption

x 6 σ→ is not fulfilled.

iv. Let us assume that x 6 a→ for every a ∈ A. The proof is given by induction on the structure of
D(pBPAdrt) process x.

Case x ≡ δ or x ≡ δ The result follows directly from the axioms;

Case x ≡ a or x ≡ a, a ∈ A. The assumption is not satisfied;

Case x ≡ y · z. From the assumption x 6 a→ for every a ∈ A by the operational semantics we obtain
that y 6 a→ for every a ∈ A. Then by the induction hypothesis we have pBPAdrt ` νrel(y) = δδδδδ.
Thus, pBPAdrt ` νrel(x) = νrel(y · z) = νrel(y) · z = δδδδδ · z = δδδδδ;

Case x ≡ y + z. From the assumption x 6 a→ for every a ∈ A by the operational semantics we obtain
that y 6 a→ and z 6 a→ for every a ∈ A. Then by the induction hypothesis we have pBPAdrt `
νrel(y) = δδδδδ and νrel(z) = δδδδδ. Thus, pBPAdrt ` νrel(x) = νrel(y) + νrel(z) = δδδδδ + δδδδδ = δδδδδ;

Case x ≡ σrel(y). The result follows from the axiom DCS4;

Case x ≡ νrel(y). From the assumption x 6 a→ for every a ∈ A, follows that y 6 a→ for every a ∈ A.
By the induction hypothesis we have pBPAdrt ` νrel(y) = δδδδδ. It implies pBPAdrt ` νrel(x) =
νrel(νrel(y)) = νrel(δδδδδ) = δδδδδ.

v. Let us assume that x̆ σ→ x̆′. The proof is given by the induction on the structure of x.

Case x ≡ a, a ∈ Aδ or x ≡ νrel(y). This cases do not apply because the assumption is not satisfied;

Case x ≡ a, a ∈ Aδ. ă σ→ ă is the only possible σ-transition and x ≡ x′. Then,
pBPAdrt ` x = a = a + σrel(a) = νrel(x) + σrel(x);

146 5.3. Operational semantics

Case x ≡ y · z. y̆ σ→ y̆′ and x′ ≡ y′ · z. By applying the induction hypothesis on y ′ we obtain:

Subcase y 6≡ y′ and pBPAdrt ` y = νrel(y) + σrel(y
′) and op(y′) < op(y). Then x 6≡ x′,

op(x′) = op(y′ · z) = op(y′) + op(z) + 1 < op(y) + op(z) + 1 = op(x) and
pBPAdrt ` x = y·z = (νrel(y)+σrel(y

′))·z = νrel(y)·z+σrel(y
′)·z = νrel(y·z)+σrel(y

′·z) =
νrel(x) + σrel(x

′);
Subcase y ≡ y′ and pBPAdrt ` y = νrel(y) + σrel(y). Then x ≡ y · z ≡ y′ · z ≡ x′ and

pBPAdrt ` x = y · z = (νrel(y) + σrel(y)) · z = νrel(y · z) + σrel(y · z) = νrel(x) + σrel(x);

Case x ≡ σrel(y). From the definition of the deduction rules it is clear that y ≡ x′. Moreover,
op(x′) < op(x) and:
pBPAdrt ` x = σrel(x

′) = δδδδδ + σrel(x
′) = νrel(σrel(x)) + σrel(x

′) = νrel(x) + σrel(x
′);

Case x ≡ y + z. From the assumption x̆
σ→ x′ we obtain that one of the following situations is

possible:

Subcase y̆ σ→ y̆′ and z̆ σ→ z̆′. By the induction hypothesis we have:
1. y 6≡ y′, pBPAdrt ` y = νrel(y) + σrel(y

′), op(y′) < op(y) and z 6≡ z′, pBPAdrt `
z = νrel(z) + σrel(z

′), op(z′) < op(z): then x 6≡ x′, op(x′) = op(y′) + op(z′) + 1 <
op(y) + op(z) + 1 = op(x) and
pBPAdrt ` x = y+z = νrel(y)+σrel(y

′)+νrel(z)+σrel(z
′) = νrel(y+z)+σrel(y

′+z′) =
νrel(x) + σrel(x

′);
2. y 6≡ y′, pBPAdrt ` y = νrel(y) + σrel(y

′), op(y′) < op(y) and z ≡ z′, pBPAdrt ` z =
νrel(z) + σrel(z): then
x 6≡ x′, op(x′) = op(y′) + op(z) + 1 < op(y) + op(z) + 1 = op(x) and
pBPAdrt ` x = y+z = νrel(y)+σrel(y

′)+νrel(z)+σrel(z) = νrel(y+z)+σrel(y
′+z) =

νrel(x) + σrel(x
′);

3. y ≡ y′, pBPAdrt ` y = νrel(y) + σrel(y) and z 6≡ z′, pBPAdrt ` z = νrel(z) + σrel(z
′),

op(z′) < op(z): it can be proved in a similar way as the previous case;
4. y ≡ y′, pBPAdrt ` y = νrel(y) + σrel(y) and z ≡ z′, pBPAdrt ` z = νrel(z) + σrel(z):

then x ≡ y′ + z′ ≡ x′ and pBPAdrt ` x = y + z = νrel(y + z) + σrel(y + z) =
νrel(x) + σrel(x);

Subcase y̆ σ→ y̆′ and z̆ 6 σ→ and x′ ≡ y′. From iv. we have pBPAdrt ` z = νrel(z). By the induc-
tion hypothesis the following cases can occur:

1. y 6≡ y′, pBPAdrt ` y = νrel(y) + σrel(y
′) and op(y′) < op(y): then x 6≡ x′,

op(x′) = op(y′) < op(y) < op(y) + op(z) + 1 = op(x) and
pBPAdrt ` x = y + z = νrel(y) + σrel(y

′) + νrel(z) = νrel(y + z) + σrel(y
′) =

νrel(x) + σrel(x
′);

2. y ≡ y′, pBPAdrt ` y = νrel(y) + σrel(y): then x 6≡ x′, op(x′) = op(y′) < op(y) +
op(z) + 1 = op(x) and pBPAdrt ` x = y + z = νrel(y) + σrel(y) + νrel(z) =
νrel(y + z) + σrel(y) = νrel(x) + σrel(x

′).

Subcase z̆ σ→ z̆′ and y̆ 6 σ→ and x′ ≡ z′. The proof is similar to the proof of the previous subcase.
�

Lemma 5.3.34. If u and v are basic terms such that at least one of them belongs to B(pBPAdrt) \
B+(pBPAdrt) and if

∀x,y ∈ B+(pBPAdrt) : op(x) + op(y) < op(u) + op(v)⇒ (x+ y↔ y ⇒ x + y = y), (5.3)

Chapter 5. Probabilistic process algebra with time 147

then u↔ v ⇒ pBPAdrt ` u = v.

Proof. The proof is almost the same as the proof of Lemma 3.3.58, only pBPA should be replaced
by pBPAdrt and the relevant properties of pBPAdrt should be used instead of the used properties of
pBPA. �

Lemma 5.3.35. If x and y are basic B+(pBPAdrt) terms, then:

x + y↔ y ⇒ pBPAdrt ` x + y = y.

Proof. The lemma is proved by induction on op(x)+ op(y) and case distinction on the structure of x.

Case x ≡ δδδδδ. The result follows from the axiom DRTA6;

Case x ≡ a, a ∈ A. x̆ a→ √ from which x̆ + y̆
a→ √. From the assumption x + y↔ y we have that

y̆
a→ √. Then pBPAdrt ` y = a + y (from Proposition 5.3.33 i.) and also pBPAdrt ` x + y =

a + y = y;

Case x ≡ δδδδδ. Since x̆ σ→ δ̆ it follows that y̆ σ→ y̆′ and δ + y′ ↔ y′. From Proposition 5.3.33 v. we
obtain pBPAdrt ` y = νrel(y) + σrel(y

′) and:

Subcase y ≡ y′. pBPAdrt ` x + y = δδδδδ + νrel(y) + σrel(y) = δδδδδ + νrel(y) + σrel(δδδδδ + y) =
νrel(y) + σrel(x + y). Since pBPAdrt ` y = νrel(y) + σrel(y) from Proposition 5.2.15 it
follows that pBPAdrt ` x + y = y;

Subcase y 6≡ y′ and op(y′) < op(y). From δ + y′↔ y′ and the induction hypothesis we obtain
pBPAdrt ` δδδδδ+y′ = y′. Therefore, pBPAdrt ` x+y = δδδδδ+νrel(y)+σrel(y

′) = δδδδδ+νrel(y)+
σrel(δδδδδ + y′) = νrel(y) + σrel(y

′) = y;

Case x ≡ a, a ∈ A. x̆ a→ √ from which x̆ + y̆
a→ √. From the assumption x + y↔ y we have that

y̆
a→ √. Then by Proposition 5.3.33 i. we have that pBPAdrt ` y = a + y. Then,

pBPAdrt ` νrel(y) = a + νrel(y). (1)
Moreover, from x̆

σ→ ă it follows that y̆ σ→ y̆′ and a+ y′↔ y′. (2)
From Proposition 5.3.33 v. and (2) follows that pBPAdrt ` y = νrel(y) + σrel(y

′). (3)
We investigate the two possibilities:

Subcase y ≡ y′. pBPAdrt ` y = νrel(y) + σrel(y). (3’)
and from (3’) and (1) we obtain
pBPAdrt ` x + y = a + y = a + νrel(y) + σrel(y) = a + νrel(y) + σrel(a + y)

= νrel(y) + σrel(x + y). (4)
Finally, from (3’) and (4) and Proposition 5.2.15 we obtain pBPAdrt ` x + y = y;

Subcase y 6≡ y′ and op(y′) < op(y). From (2) and the induction hypothesis we obtain that
pBPAdrt ` a + y′ = y′. Then from (1) and (3) it follows that
pBPAdrt ` x+y = a+νrel(y)+σrel(y

′) = a+νrel(y)+σrel(a+y′) = a+νrel(y)+σrel(y
′) =

νrel(y) + σrel(y
′) = y.

Case x ≡ δδδδδ · t. pBPAdrt ` x + y = δδδδδ · t + y = δδδδδ + y = y;

148 5.3. Operational semantics

Case x ≡ a · t, a ∈ A. From the assumption a · t + y↔ y and since ă · t a→ t we obtain that y̆ a→ s
and t↔ s. The rest of the proof of this case resembles the fourth case in the proof of Lemma
3.3.59 on page 84.

Case x ≡ δδδδδ · t. Since x̆ σ→ δ̆ · t it follows that y̆ σ→ y̆′ and δ · t+ y′↔ y′. From Proposition 5.3.33 v.
we obtain pBPAdrt ` y = νrel(y) + σrel(y

′) and:

Subcase y ≡ y′. pBPAdrt ` x + y = δδδδδ · t+ νrel(y) + σrel(y) = δδδδδ · t+ νrel(y) + σrel(δδδδδ · t +y) =
νrel(y) + σrel(x + y). Since pBPAdrt ` y = νrel(y) + σrel(y) from Proposition 5.2.15 it
follows that pBPAdrt ` x + y = y;

Subcase y 6≡ y′ and op(y′) < op(y). From δ · t + y′ ↔ y′ and the induction hypothesis we
obtain pBPAdrt ` δδδδδ · t + y′ = y′. Finally, pBPAdrt ` x + y = δδδδδ · t + νrel(y) + σrel(y

′) =
δδδδδ · t + νrel(y) + σrel(δδδδδ · t + y′) = νrel(y) + σrel(y

′) = y;

Case x ≡ a · t, a ∈ A. From the assumption a · t + y↔ y and since ă · t a→ t we obtain y̆ a→ s and
t↔ s. Note that s is a basic term. In a similar way as in the sixth case using Lemma 5.3.34 we
can obtain that pBPAdrt ` t = s. (5)
Moreover, from Proposition 5.3.33 ii. we obtain that pBPAdrt ` y = a · s + y. Now it follows
that pBPAdrt ` νrel(y) = a · s + νrel(y). (6)
Since ă · t σ→ ă · t, it follows that y̆ σ→ y̆′ and a · t+ y′↔ y′. (7)
From Proposition 5.3.33 v. and (7) we obtain pBPAdrt ` y = νrel(y) + σrel(y

′) (8)
and

Subcase y ≡ y′. From (5) and (8) it follows that
pBPAdrt ` x+y = a·t+νrel(y)+σrel(y) = a·t+νrel(y)+σrel(x+y) = νrel(y)+σrel(x+y)
from which applying Proposition 5.2.15 and (8) we obtain pBPAdrt ` x + y = y;

Subcase y 6≡ y′ and op(y′) < op(y). Since op(x) + op(y′) < op(x) + op(y) by applying the
induction hypothesis on (7) we obtain pBPAdrt ` a · t + y′ = y′. Then using (5), (6) and
(8) we have:
pBPAdrt ` x + y = a · t + νrel(y) + σrel(y

′) = a · t + νrel(y) + σrel(a · t + y′) =
a · s + νrel(y) + σrel(y

′) = νrel(y) + σrel(y
′) = y;

Case x ≡ x1 + x2. From the assumption x1 + x2 + y↔ y using Proposition 5.3.32 we obtain x1 +
y ↔ y and x2 + y ↔ y. By the induction hypothesis pBPAdrt ` x1 + y = y and pBPAdrt `
x2+y = y. Hence, pBPAdrt ` x+y = x1+x2+y = x1+x2+y+y = (x1+y)+(x2+y) =
y + y = y;

Case x ≡ σrel(x1). From assumption σrel(x1) + y↔ y and since σrel(x̆1)
σ→ x̆1 it follows that y̆ σ→ y̆′.

Also x1 + y′ ↔ y′. Note that y′ is a basic B+(pBPAdrt) term. Since op(x1) < op(x) and
op(y′) ≤ op(y) (the latter follows from Proposition 5.3.33 v.), op(x1)+op(y′) < op(x)+op(y).
Therefore, pBPAdrt ` x1 + y′ = y′ from the induction hypothesis. Moreover, from Proposition
5.3.33 v. we obtain pBPAdrt ` y = νrel(y) + σrel(y

′). Now it follows that pBPAdrt ` x +
y = σrel(x1) + νrel(y) + σrel(y

′) = νrel(y) + σrel(x1 + y′) = νrel(y) + σrel(y
′) = y. Hence,

pBPAdrt ` x + y = y.
�

Theorem 5.3.36 (Completeness theorem for pBPAdrt). If z and u are closed pBPAdrt terms, then
z↔ u⇒ pBPAdrt ` z = u.

Chapter 5. Probabilistic process algebra with time 149

Proof. By the Elimination theorem and the Soundness theorem it is sufficient to prove that this result
is valid for basic terms.

Let us assume that z and u are basic pBPAdrt terms and z↔ u.

Case z,u ∈ B+(pBPAdrt). From the assumption we have: z+u↔ z+z↔ z, z+u↔ u+u↔ u. From
Lemma 5.3.35 we obtain pBPAdrt ` z+u = z, pBPAdrt ` z+u = u and also pBPAdrt ` z = u.

Case z ∈ B(pBPAdrt) \ B+(pBPAdrt) or u ∈ B(pBPAdrt) \ B+(pBPAdrt) From above we have that
∀x,y ∈ B+(pBPAdrt) : x + y ↔ y ⇒ pBPAdrt ` x + y = y. Since this holds for
all basic B+(pBPAdrt) terms, then it holds for all basic B+(pBPAdrt) terms x and y such that
op(x) + op(y) < op(z) + op(u). Therefore, from Lemma 5.3.34 and the assumption z↔ u it
follows that pBPAdrt ` z = u.

�

5.4 Extension with merge and communication
The concept of parallel composition will now be brought into the timed probabilistic process algebra
pBPAdrt. The intuition about parallel processes which we discussed in Chapter 4 when we introduced
pACP+ remains valid here as well. We recall that , two parallel probabilistic processes can syn-
chronize (communicate) but they can also autonomously perform actions in which case they perform
chosen actions independently of each other. As a result of such independent activities, one process
can start its activities before or after the other process has resolved its probabilistic choice. Now, in
the presence of time, there are more situations for which the activities of parallel composition are
restricted. A choice made by one process may restrict the further activities of the parallel composi-
tion such that time consistency is obeyed. A similar situation can be found in non-probabilistic time
settings. But since we have here probabilistic processes and their probability distributions, restriction
of the activities of one process immediately leads to a renormalization of the probability distribution
of that process. Thus, we come to a point at which it is necessary to introduce a new operator as a
means to restrain certain activities and that eventually enforces the renormalization of the probability
distribution of one process.

Again, we focus our attention on an extension of pBPAdrt with parallel composition and do not
consider an extended version of pBPA−

drt. We believe that one will have no difficulties to obtain it by
following the tactic we use for pBPAdrt.

5.4.1 Axiomatization of pACP+
drt

Next, we extend pBPAdrt with the parallel composition operator and the additional operators intro-
duced in Chapter 4. As one can notice, there is another additional operator σ which does exactly
what we have explained in the introduction: restrain activities and renormalize probabilities. Thus
the signature ΣpACP+

drt
of our new process algebra pACP+

drt contains: the constants and operators of
pBPAdrt, the operators of pACP+ and the new operator σ called the renormalization operator. The
set of axioms of pACP+

drt consists of the axioms of pBPAdrt (Table 3.1+5.1+5.2+ 5.3), the axioms of
pACP+ given in Table 4.2+4.4 without axiom PrMM4 and the new axioms given in Table 5.10, 5.11
and 5.12.

It is clear that the axioms PrDRTMM4 − 7 (Table 5.12) are timed counterparts of PrMM4
from pACP+. They express the idea behind the]||[operator as it was a case with PrMM4, except that
each of them shows how this concept is applied on terms with particular structure. By Proposition

150 5.4. Parallel composition and communication

a | b = γ(a, b) DRTCF

a | b · x = (a | b) · x DRTCM2
a · x | b = (a | b) · x DRTCM3

a · x | b · y = (a | b) · (x ‖ y) DRTCM4

σrel(x) | νrel(y) = δ DRTCM5
νrel(x) | σrel(y) = δ DRTCM6
σrel(x) |σrel(y) = σrel(x | y) DRTCM7
(x tπy) | z = x | z tπy | z PrCM2
z | (x tπy) = z |x tπz | y PrCM3

a‖ x = a · x DRTM2
a · x‖ y = a · (x ‖ y) DRTM3
(x+ y)‖ z = x‖ z + y‖ z DRTM4
(x tπy)‖ z = x‖ z tπy‖ z PrCM1

σrel(x)‖ νrel(y) = δ DRTM5
σrel(x)‖ (νrel(y) + σrel(z)) = σrel(x‖ z) DRTM6

∂H(a) = a if a /∈ H DRTD1
∂H(a) = δ if a ∈ H DRTD2
∂H(x + y) = ∂H(x) + ∂H(y) D3
∂H(x · y) = ∂H(x) · ∂H(y) D4
∂H(σrel(x)) = σrel(∂H(x)) DRTD5

Table 5.10: Axioms for pACP+
drt - part 1.

5.2.7 and 5.2.8, axioms PrMM2− 3 and the Elimination theorem of pACP+
drt, which is proved later,

it is clear that the forms of terms captured by these axioms (terms that occur on the left-hand sides
of the axioms) cover the entire set of closed terms of pACP+

drt. As we can notice these axioms do not
take care of time consistency since z and w can be arbitrary terms with arbitrary time activities. This
is the role given to the ‖ operator which is expressed by axioms DRTM2, DRTM3, DRTM5 and
DRTM6 that also occur in the non-probabilistic discrete time ACP together with the new axioms
PrDRTM7 and PrDRTM8. PrDRTM7 and PrDRTM8 handle the time-step behaviour of the
left merge. Actually they express that when the left process of the left merge can only do a time step,
then the right process has to restrict its probability distribution over its sub-processes which can do
a time step as well. In particular, PrDRTM7 says that if one sub-process of the right argument of
the left merge which is assigned probability π has to be initiated immediately, that is, it cannot idle,
then after the time step it cannot be an outcome of the probabilistic choice of the right process, so it
is removed and the probability π is distributed over the possible outcome. The idea of PrDRTM8 is
similar, but it expresses that only those summands of each sub-process of the right argument have to
be removed which cannot idle. If at least one summand can idle, then it remains as a possible outcome
with the probability assigned to the original sub-process (before cutting out the “now” parts).

Chapter 5. Probabilistic process algebra with time 151

σ(νrel(x)) = δ PrRN1
σ(νrel(x) + σrel(y)) = y PrRN2
σ(νrel(x) tπy) = σ(y) PrRN3
σ((νrel(x) + σrel(y)) tπz) = σ(σrel(y) tπz) PrRN4

σrel(x)‖ (νrel(y) tπz) = σrel(x)‖ z PrDRTM7
σrel(x)‖ ((νrel(y) + σrel(z)) tπw) = σrel(x)‖ (σrel(z) tπw) PrDRTM8

Table 5.11: Additional axioms for pACP+
drt.

x′′ = x′′ + x′′, y′′ = y′′ + y′′ ⇒ PrDRTMM4
(νrel(x

′) + σrel(x
′′), z)]||[(νrel(y

′) + σrel(y
′′), w) =

(νrel(x
′), z)]||[(νrel(y

′), w)) +
(

σrel(x
′′)‖ w + σrel(y

′′)‖ z + σrel(x
′′) |σrel(y

′′)
)

x = x + x, y = y + y ⇒ PrDRTMM5
(νrel(x), z)]||[(νrel(y), w) = νrel(x)‖ w + νrel(y)‖ z + νrel(x) | νrel(y)

(νrel(x) + σrel(x
′), z)]||[(νrel(y), w) = (νrel(x), z)]||[(νrel(y), w) + σrel(x

′)‖ w PrDRTMM6

(νrel(x), z)]||[(νrel(y) + σrel(y
′), w) = (νrel(x), z)]||[(νrel(y), w) + σrel(y

′)‖ w PrDRTMM7

Table 5.12: Additional axioms for]||[in pACP+
drt.

The renormalization operator σ does almost the same as the left merge with a left argument that
can only do a time step. The difference is that it is a unary operator and when it is applied to a process,
the resulting process contains those sub-processes of the original one which can perform a time step.
Obviously, this operator is not needed for the axiomatization of parallel composition, but it is needed
in the next section where the operational semantics of pACP+

drt will be defined. We have it here in the
signature just to make pACP+

drt a complete axiomatization with respect to the operational semantics
defined later.

Definition 5.4.1. The set of basic terms of pACP+
drt is defined in the same way like the set of the basic

terms in pBPAdrt (Definition 5.2.3).

Definition 5.4.2. SP(pACP+
drt) denotes the set of all closed terms over the signature ΣpACP+

drt
.

Proposition 5.4.3. If t1 and t2 are basic B+(pBPAdrt) terms, then pACP+
drt ` σ(t1 + t2) = σ(t1) +

σ(t2).

Proof. Let us assume that t1, t2 are basic B+(pBPAdrt) term. From Proposition 5.2.7 either pACP+
drt `

t1 = νrel(s1) + σrel(r1) or pACP+
drt ` t1 = νrel(s1) and pACP+

drt ` t2 = νrel(s2) + σrel(r2) or pACP+
drt `

t2 = νrel(s2) for some basic B+(pBPAdrt) terms s1, r1, s2 and r2. Hence,
pACP+

drt ` σ(t1 + t2) = σ(νrel(s1) + σrel(r1) + νrel(s2) + σrel(r2)) = r1 + r2 = σ(t1) + σ(t2) or
pACP+

drt ` σ(t1 + t2) = σ(νrel(s1) + σrel(r1) + νrel(s2)) = r1 + δ = σ(t1) + σ(t2) or

152 5.5. Operational semantics

pACP+
drt ` σ(t1 + t2) = σ(νrel(s1) + νrel(s2) + σrel(r2)) = δ + r2 = σ(t1) + σ(t2) or

pACP+
drt ` σ(t1 + t2) = σ(νrel(s1) + νrel(s2)) = r1 + r2 = σ(t1) + σ(t2). �

Lemma 5.4.4. Let p and q be basic pBPAdrt terms. Then there are closed pBPAdrt terms r, s, t, u and
v such that pACP+

drt ` p‖ q = r, pACP+
drt ` p | q = s, pACP+

drt ` p ‖ q = t, pACP+
drt ` ∂H(p) = u,

H ⊆ A and pACP+
drt ` σ(p) = v.

Proof. For the operators that occur in pACP+ see the proof of Lemma 4.2.3. Here we give only
the part of the inductive proof which considers the σ operator. It is based on case distinction of the
structure of p in the same way it was done in Lemma 4.2.3.

Case p ≡ a or p ≡ a · p1, a ∈ Aδ. pACP+
drt ` σ(p) = δ and it is a closed pBPAdrt term;

Case p ≡ a, a ∈ Aδ. pACP+
drt ` σ(p) = a which is a closed pBPAdrt term;

Case p ≡ a · p1, a ∈ Aδ. pACP+
drt ` σ(p) = a · p1 and it is closed pBPAdrt term;

Case p ≡ p1 + p2. Since p1, p2 ∈ B+(pBPAdrt) from Proposition 5.4.3 follows that:

pACP+
drt ` σ(p) = σ(p1 + p2) = σ(p1) + σ(p2). By the induction hypothesis there are closed

pBPAdrt terms r1 and r2 such that pACP+
drt ` σ(p1) = r1 and pACP+

drt ` σ(p2) = r2. Finally,
pACP+

drt ` σ(p) = r1 + r2 which is a closed pBPAdrt term;

Case p ≡ σrel(p1). Using the axiom PrRN2 we obtain:

pACP+
drt ` σ(p) = σ(νrel(δ)+σrel(p1)) = p1 and by the assumption p1 is a closed pBPAdrt term;

Case p ≡ p1 tπp2. Since p ∈ B(pBPAdrt) \ B+(pBPAdrt) using Proposition 5.2.8 we obtain that
pBPAdrt ` p = νrel(s1 tπ1s2 tπ2 . . . sn−1 tπn−1sn) tρ

(

(νrel(r1) + σrel(u1)) tα1(νrel(r2) + σrel(u2)) tα2 . . .

tαm−2 (νrel(rm−1) + σrel(um−1)) tαm−1(νrel(rm) + σrel(um))
)

for some
n,m ∈ IN and some basic terms si, rj, uj ∈ B+(pBPAdrt), 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then,

pACP+
drt ` σ(p) = σ

(

(νrel(r1) + σrel(u1)) tα1(νrel(r2) + σrel(u2)) tα2 . . .

(νrel(rm−1) + σrel(um−1)) tπm−1(νrel(rm) + σrel(um))
)

PrRN3×m
=

σ

(

σrel(u1) tα1σrel(u2) tα2 . . . σrel(um−1) tαm−1σrel(um)
)

=

σ

(

σrel(u1 tα1u2 tα2 . . . um−1 tαm−1um)
)

=

u1 tα1u2 tα2 . . . um−1 tαm−1um and u1 tα1u2 tα2 . . . um−1 tαm−1um is a closed
pBPAdrt term.

�

Lemma 5.4.5. If p, q, z and w are basic terms, then there is a closed pBPAdrt term r such that
pACP+

drt ` (p, z)]||[(q, w) = r.

Proof. See the proof of Lemma 4.2.4. �

Theorem 5.4.6 (Elimination theorem of pACP+
drt). Let p be a closed pACP+

drt term. Then there is a
closed pBPAdrt term q such that pACP+

drt ` p = q.

Proof. The proof of the theorem is based on the results in Proposition 5.4.3, 5.4.4 and 5.4.5 and it
resembles the proof of the Elimination theorem of pACP+ (Theorem 4.2.5). �

Chapter 5. Probabilistic process algebra with time 153

5.5 Structured operational semantics of pACP+
drt

Next we define the operational semantics of pACP+
drt and the bisimulation modelMpACP+

drt
. There are a

few interesting points about the term-deduction system TpACP+
drt

which will be described in more detail
later. First, in order to formulate σ-transitions of the merge operator (by means of the left merge),
keeping in mind the time restriction that parallel composition or left merge of two processes can do
a time step only if both arguments can do so, we need the additional operator σ and the additional
predicate D. They have been defined earlier, but here we will justify them. As a consequence, a
second interesting issue arises, which is the formulation of the deduction rules for the σ operator.
Finally, as a result of non-trivial deduction rules for the σ operator and the D predicate we end up
with the conclusion that the defined term-deduction system is not stratifiable. We elaborate all these
issues after we formally introduce the operational semantics of pACP+

drt.

5.5.1 Model of pACP+
drt and properties of the model

The operational semantics of pACP+
drt is defined by the term-deduction system TpACP+

drt
= (Σ̆pACP+

drt
,

DRpACP+
drt

) with Σ̆pACP+
drt

= (A
δ
∪ Ă

δ
∪ Aδ ∪ Ăδ,+, ·, tπ, σrel, νrel, ‖ , ‖ , | ,]||[, ∂H ,σ,D) and with

the deduction rules given in Table(s) 5.5+ 5.6+5.7+5.8 (deduction rules of pBPAdrt) and the deduction
rules given in Tables 5.13 and 5.14 (deduction rules of pACP+) as well as the deduction rules in Tables
5.15 and 5.16. Furthermore, the items 1, 3-5 in Definition 3.3.2 (pg. 49), together with Definition
4.3.1 (pg. 96) and Definition 5.3.1 (pg. 129), when the process algebras used in these definitions
are replaced by pACP+

drt, and the added item in Definition 5.5.1 define the set of static processes
SP(pACP+

drt); the items 1-3 in Definition 3.3.3 (pg. 3.3.3) together with Definition 4.3.2 (pg. 96) and
Definition 5.3.2 (pg. 129) (all occurring process algebras are replaced by pACP+

drt) define the set of
trivial static processes D(pACP+

drt); the items 1-3 in Definition 3.3.4 (pg. 50) together with Definition
4.3.3 (pg. 96) and Definition 5.3.3 (pg. 129) (all occurring process algebras are replaced by pACP+

drt)
define the set of dynamic processes DP(pACP+

drt); the PDF function µ on PT(pACP+
drt) is defined by

Definition 5.5.2 (pg. 154) and the probabilistic bisimulation relation on PT(pACP+
drt) is defined by

Definition 5.3.5 (pg. 130) when pBPAdrt is replaced by pACP+
drt.

Definition 5.5.1.

7.6. if s ∈ SP(pACP+
drt), then σ(s) ∈ SP(pACP+

drt).

R16 :
x ; x′, y ; y′

x ‖ y ; x′‖ y + y′‖ x+ x′ | y′
R17 :

x ; x′, y ; y′

(x, z)]||[(y, w) ; x′‖ w + y′‖ z + x′ | y′

R18 :
x ; x′

x‖ y ; x′‖ y
R19 :

x ; x′, y ; y′

x | y ; x′ | y′
R20 :

x ; x′

∂H(x) ; ∂H(x′)

Table 5.13: Probabilistic transitions of pACP+
drt - part 2.

154 5.5. Operational semantics

R6 :
x

a→ x′

x‖ y a→ x′ ‖ y
R7 :

x
a→√

x‖ y a→ y

R8 :
x

a→ x′, y
b→ y′, γ(a, b) = c

x | y c→ x′ ‖ y′
R9 :

x
a→ x′, y

b→√, γ(a, b) = c

x | y c→ x′, y |x c→ x′

R10 :
x

a→√, y b→ √, γ(a, b) = c

x | y c→√
R11 :

x
a→ x′, a /∈ H

∂H(x)
a→ ∂H(x′)

R12 :
x

a→ √, a /∈ H
∂H(x)

a→ √

Table 5.14: Action transitions of pACP+
drt - part 2.

R33 :
x ; x′, x′

σ→ x′′

σ(x) ; x′′
R34 :

¬D(x)

σ(x) ; δ̆

R35 :
x

σ→ x′,D(y)

x‖ y σ→ x′‖ σ(y)
R36 :

x
σ→ x′, y

σ→ y′

x | y σ→ x′ | y′
R37 :

x
σ→ x′

∂H(x)
σ→ ∂H(x′)

Table 5.15: Additional rules of pACP+
drt.

Definition 5.5.2. (PDF for pACP+
drt) A probability distribution function on PT(pACP+

drt) is defined by
the equalities in Table 3.6, 3.7, 4.7, 5.9 and 5.17.

As one can notice the crucial rule in which σ is incorporated is the deduction rule for time
transition of the left merge (Table 5.15). Let us consider the following composition: u ≡
σrel(ă)‖

(

b t1/2σrel(c t1/6d)
)

. Note that u is a dynamic process. Because the left argument can only
do a time step, u is also forced to do a time step. But u can do a time step only if the right argu-
ment can do a time step. In other words, we cannot permit u to do a time step and then check the
second argument, but we have to block any execution of a σ-transition if the second argument cannot
progress time. And that is the reason to have the D premise in rule R35. Thus, with the D predicate
we “check” if the right argument can do a time step or not. In the setting of non-probabilistic discrete

time process algebra the counterpart of this rule is
x

σ→ x′, y
σ→ y′

x‖ y σ→ x′‖ y′
. But since the right argument in

the left merge in TpACP+
drt

is a probabilistic process (a static process from SP(pACP+
drt)) the premise

y
σ→ y′ can never be proved (due to the deduction ruleR25 in Table 5.7 on pg. 130). What we actually

need as a premise in the left merge rule is: ∃y ′ : y ; y′ & y′
σ→ y′′. Back to Proposition 5.3.15 and

its extension in TpACP+
drt

given later in Proposition 5.5.7 we see that predicate D expresses exactly this
property. This is one use of the predicate D. However, this predicate is essential for the formulation
of rule R34. The premise ¬D(x) expresses that ∀x′ : ¬(x ; x′) or x′ 6 σ→ (see Proposition 5.5.7)
in which case we conclude that σ(x) ; δ̆. Clearly, we do not want a universal quantifier in the
premises.

Back to our example, we can derive from the deduction rules that D
(

b t1/2σrel(c t1/6d)
)

. Then,
u can make a time transition, but the question is: which part of the right argument does not conflict

Chapter 5. Probabilistic process algebra with time 155

R38 :
D(x),D(y)

D(x ‖ y)
R39 :

D(x),D(y)

D((x, z)]||[(y, w))
R40 :

D(x),D(y)

D(x‖ y)

R41 :
D(x),D(y)

D(x | y)
R42 :

D(x)

D(∂H(x))
R43 :

x ; x′, x′
σ→ x′′,D(x′′)

D(σ(x))

Table 5.16: Deduction rules of pACP+
drt (predicates).

µ(σ(p), δ̆) = 1, if ¬D(p)

µ(σ(p), y) =
(

∑

{x : µ(p,x)>0 & x
σ
→y}

µ(p, x)
)

/
(

∑

{x : µ(p,x)>0 & x
σ
→}

µ(p, x)
)

if D(p)

Table 5.17: Equalities that defined PDF for pACP+
drt (part 4)

time consistency? In other words, all “now” sub-processes of b t1/2σrel(c t1/6d) have to be dropped
out after the time tick. This concept is captured by the σ operator. Rule R33 expresses exactly that
the σ operator looks only at those sub-processes of x which “have survived” the last time tick. It
prohibits all activities of x that cannot do a time tick. Therefore, for process u we can derive that:

σrel(ă)
σ→ ă,D

(

b t1/2σrel(c t1/6d)
)

σrel(ă)‖
(

b t1/2σrel(c t1/6d)
) σ→ ă‖ σ

(

b t1/2σrel(c t1/6d)
) (R35)

ă
a→√

ă‖ σ
(

b t1/2σrel(c t1/6d)
) a→ σ

(

b t1/2σrel(c t1/6d)
) (R39)

σrel(c t1/6d) ; σrel(c̆), σrel(c̆)
σ→ c̆

σ
(

b t1/2σrel(c t1/6d)
)

; c̆
(R33)

σrel(c t1/6d) ; σrel(c̆), σrel(c̆)
σ→ d̆

σ
(

b t1/2σrel(c t1/6d)
)

; d̆
(R33)

...

but we cannot derive that σ
(

b t1/2σrel(c t1/6d)
)

; b̆.

Properties of PDF and transitions From this point on we use a slightly different strategy than in
the previous sections. The reason is the following: as before we need to prove that µ is well defined
on PT(pACP+

drt) and the proof will be inductive on the structure of SP(pACP+
drt) process. But, in that

proof, in the step for the σ operator, due to the definition of µ, we need to formulate a relation between
the D predicate and the value of µ (see Proposition 5.5.7). In most of the proofs of properties we
give now, we consider only the new operator. The proof given for the relevant property in one of the
previous chapters remains valid for the other operators here as well.

Proposition 5.5.3.

i. If u is a DP(pACP+
drt) process and u a→ p for some a ∈ A, then p ∈ SP(pACP+

drt).

ii. If u is a DP(pACP+
drt) process and u σ→ v, then v ∈ DP(pACP+

drt).

156 5.5. Operational semantics

�

Proposition 5.5.4. If p ∈ SP(pACP+
drt) and p ; u, then u ∈ DP(pACP+

drt).

Proof. The proof is a continuation of the inductive proof of Proposition 4.3.8 and 5.3.9. Let us assume
that p ; u and p ≡ σ(q) for some process q. Then q ; v and v σ→ u. From the induction hypothesis
v ∈ DP(pACP+

drt) and from Proposition 5.5.3ii. the conclusion follows. �

Proposition 5.5.5. Let p ∈ PT(pACP+
drt). If µ(p, x) is defined, then p ; x implies µ(p, x) > 0.

Proof. The proof of the proposition is given by induction on the structure on p. Since the formulation
differs from the similar properties in the previous chapters, we give almost all steps of the inductive
proof except the most trivial cases.

Let us assume that µ(p, x) is defined and p ; x.

Case p ≡ a or p ≡ a, a ∈ Aδ. These cases are trivial;

Case p ≡ σrel(q). Then q ; y with x ≡ σrel(y). Since µ(p, x) is defined, µ(q, y) is defined as well
(follows directly from the definition of the PDF). From the induction hypothesis follows that
µ(q, y) > 0 from which µ(p, x) > 0;

Case p ≡ νrel(q). This case is similar to the previous one;

Case p ≡ q + r. Then q ; y and r ; z with x ≡ y+ z. Since µ(p, x) is defined, µ(q, y) and µ(r, z)
are defined as well. To conclude, µ(q, y) > 0 and µ(r, z) > 0 from the induction hypothesis
which implies µ(p, x) > 0;

Case p ≡ q · r. Then q ; y with x ≡ y · r. Since µ(p, x) is defined, µ(q, y) is defined as well. The
result follows from the induction hypothesis and the definition of the PDF;

Case p ≡ q tπr. q ; x or r ; x. From the definition of the PDF we have that µ(p, x) = π ·
µ(q, x) + (1 − π) · µ(r, x). Therefore, well defined µ(p, x) implies well defined µ(q, x) and
µ(r, x). The conclusion follows than easily;

Case p ≡ q ‖ r. Then q ; y and r ; z with x ≡ y‖ r+z‖ q+y | z. Since µ(p, x) = µ(q, y) ·µ(r, z)
is defined, follows that µ(q, y) and µ(r, z) are defined as well. To conclude, µ(q, y) > 0 and
µ(r, z) > 0 from the induction hypothesis which implies µ(p, x) > 0;

Case p ≡ (q, z)]||[(r, w). This case is similar to the previous one;

Case p ≡ q | r. This case is similar to the fourth case;

Case p ≡ q‖ r. This case is similar to the fourth case;

Case p ≡ ∂H(q). This case is similar to the second case;

Case p ≡ σ(q). If ¬D(q) then x ≡ δ̆ and from the definition µ(p, δ̆) = 1 > 0. If D(q), then q ; y

and y σ→ x for some y. Furthermore, µ(p, x) = µ(σ(q), x) =

�
{u : µ(q,u)>0 & u

σ
→x}

µ(q,u)�
{v : µ(q,v)>0 & v

σ
→}

µ(q,v)
.

Since µ(p, x) is define,
∑

{u : µ(q,u)>0 & u
σ
→x}

µ(q, u) and
∑

{v : µ(q,v)>0 & v
σ
→}

µ(q, v) are defined as

Chapter 5. Probabilistic process algebra with time 157

well and
∑

{v : µ(q,v)>0 & v
σ
→}

µ(q, v) 6= 0. Then, µ(q, u) is defined for all u such that u σ→ x.

Therefore, µ(q, y) is defined as well. From the induction hypothesis now we obtain that
µ(q, y) > 0 which implies

∑

{u : µ(q,u)>0 & u
σ
→x}

µ(q, u) > 0. Finally,

µ(p, x) = µ(σ(q), x) =

�
{u : µ(q,u)>0 & u

σ
→x}

µ(q,u)�
{v : µ(q,v)>0 & v

σ
→}

µ(q,v)
> 0.

�

Proposition 5.5.6. Let u ∈ DP(pACP+
drt). D(u) iff ∃y : u

σ→ y.

Proof. The proof is a continuation of the inductive proof of Proposition 5.3.14.

Case u ≡ v |w. D(u) iff D(v) and D(w) iff (by the induction hypothesis) there are x, y such that
v

σ→ x and w σ→ y iff u σ→ x | y;

Case u ≡ v‖ p. D(u) iff D(v) and D(p) iff (by the induction hypothesis) there are x such that v σ→ x

and D(p) iff v‖ p σ→ x‖ σ(p);

Case u ≡ ∂H(v). D(u) iff D(v) iff (by the induction hypothesis) there is x such that v σ→ x iff
u

σ→ ∂H(x).
�

Proposition 5.5.7. Let p ∈ SP(pACP+
drt). D(p) iff ∃x, y : p ; x & x

σ→ y.

Proof. The proof is a continuation of the inductive proof of Proposition 5.3.15.
Let us assume that D(p). If

Case p ≡ q‖ r. Then D(q) and D(r). By the induction hypothesis follows that there are u, v such
that q ; u & u

σ→ v. Therefore, q‖ r ; u‖ r. Since D(r), u‖ r σ→ v‖ σ(r);

Case p ≡ q ‖ r. Then D(q) and D(r). By the induction hypothesis follows that there are u, v such
that q ; u & u

σ→ v and there are w, z such that r ; w & w
σ→ z. Therefore, p ;

u‖ r+w‖ q+u |w. Since D(r) and D(q), u‖ r+w‖ q+u |w σ→ v‖ σ(r)+ z‖ σ(q)+ v | z;

Case p ≡ (q, z)]||[(r, w). This case is similar to the previous case;

Case p ≡ σ(q). From the assumption D(σ(q)) follows that q ; u & u
σ→ v & D(v) for some u, v.

Then, σ(q) ; v. From Proposition 5.5.6 since D(v) and v ∈ DP(pACP+
drt) follows that v σ→ w

for some w;

Case p ≡ ∂H(q). Then D(q). From the induction hypothesis follows that there are u, v such that
q ; u & u

σ→ v. Therefore, ∂H(q) ; ∂H(u) and ∂H(u)
σ→ ∂H(v).

Let us assume that there are x, y such that p ; x and x σ→ y.

Case p ≡ q‖ r. The assumption implies that q ; u and x ≡ u, so u‖ r σ→ y. Therefore, u σ→ v

and D(r) and y ≡ v‖ σ(r). We have obtained that q ; u and u σ→ v which implies by the
induction hypothesis that D(q). Since D(r), it follows D(p) as well;

158 5.5. Operational semantics

Case p ≡ q ‖ r. The assumption implies that q ; u, r ; v, x ≡ u‖ r + v‖ q + u | v σ→ y. The
following cases can occur:

Subcase u‖ r σ→ y and v‖ q 6 σ→ and u | v 6 σ→. Then u σ→ u′, D(r) and y ≡ u′‖ σ(r). By the
induction hypothesis D(q) and thus D(p);

Subcase v‖ q σ→ y and u‖ r 6 σ→ and u | v 6 σ→. This case is similar to the previous one;

Subcase u‖ r σ→ y′, v‖ q σ→ y′′ and u | v σ→ y′′′ and y ≡ y′ + y′′ + y′′′. Then D(r) and D(q)
from which D(p).

Case p ≡ (q, z)]||[(r, w). This case is similar to the previous one;

Case p ≡ σ(q). From σ(q) ; x follows that q ; u and u σ→ x. Moreover, from the assumption
x

σ→ y using Proposition 5.5.6 we conclude that D(x). Hence, D(p);

Case p ≡ ∂H(q). Then q ; u, x ≡ ∂H(u), u σ→ v and y ≡ ∂H(v). From the induction hypothesis
follows that D(q) from which D(p).

�

Proposition 5.5.8. Let u ∈ DP(pACP+
drt) and u σ→ x and u σ→ y then x ≡ y.

Proof. Continuation of the proof of Proposition 5.3.18.

Case u ≡ v‖ q. By the assumption u σ→ x and u σ→ y we have that v σ→ x′, D(q) and v σ→ y′, D(q)
and x ≡ x′‖ σ(q) and y ≡ y′‖ σ(q). By the induction hypothesis we get x′ ≡ y′ from which
the conclusion follows;

Case u ≡ v |w. By the assumption u σ→ x and u σ→ y we have that v σ→ x′, w σ→ x′′ and v σ→ y′

and w σ→ y′′ and x ≡ x′ |x′′ and y ≡ y′ | y′′. By the induction hypothesis we get x′ ≡ y′ and
x′′ ≡ y′′ from which the conclusion follows;

Case u ≡ ∂H(v). It is similar to the second case.
�

Corollary 5.5.9. Let u ∈ DP(pACP+
drt) and M ⊆ PT(pACP+

drt) and u σ→ M . Then there is exactly
one v ∈M such that u σ→ v.

Proposition 5.5.10. The PDF function µ is well defined on PT(pACP+
drt).

Proof. See proofs of Proposition 4.3.5 and 5.3.6. Here we continue the inductive proof, the step for
the σ operator. Let us assume that p ≡ σ(q) for some q ∈ SP(pACP+

drt).

If ¬D(q), then µ(σ(q), u) =

{

1, if u ≡ δ̆

0, otherwise

Let us suppose that D(q). Proposition 5.5.7 implies that {x : q ; x & x
σ→} 6= ∅. Using

Proposition 5.5.5, which is applicable because from the induction hypothesis µ(q, x) is well defined
for any x, we obtain that

∑

{x : µ(q,x)>0 & x
σ
→}

µ(q, x) 6= 0. From {x : µ(q, x) > 0 & x
σ→ u} ⊆

{x : µ(q, x) > 0 & x
σ→} follows that

∑

{x : µ(q,x)>0 & x
σ
→u}

µ(q, x) ≤ ∑

{x : µ(q,x)>0 & x
σ
→}

µ(q, x). Hence,

µ(σ(p), u) is defined and µ(σ(p), u) ∈ [0, 1]. �

Chapter 5. Probabilistic process algebra with time 159

Proposition 5.5.11. Let p ∈ PT(pACP+
drt). Then µ(p, x) > 0 implies p ; x.

Proof. We give only the part of the inductive proof which concerns the σ operator. For the other
inductive steps (the other operators) see the proofs of Proposition 4.3.12 and 5.3.20. Note that the
other direction follows from Proposition 5.5.5 and 5.5.10.

Let be µ(p, x) > 0 and p ≡ σ(q) for q ∈ SP(pACP+
drt).

If ¬D(q) then the assumption implies x ≡ δ̆ and then σ(q) ; δ̆ as well.
Let D(q). The assumption µ(σ(q), x) > 0 implies that µ(q, {z : µ(q, z) > 0 & z

σ→ x}) > 0.
Hence, {z : µ(q, z) > 0 & z

σ→ x} 6= ∅. Thus, we have obtained that there is z such that q ; z and
z

σ→ x from which σ(q) ; x. �

Proposition 5.5.12. The cPDF µ is well defined on PT(pACP+
drt).

Proof. Continuation of the proof of Proposition 4.3.6 and 5.3.7.
Let us assume that p ≡ σ(q) for some q ∈ SP(pACP+

drt) and M ⊆ PT(pACP+
drt).

If ¬D(q), then µ(σ(q),M) =

{

1, if δ̆ ∈M
0, otherwise

Let us suppose that D(q). µ(σ(q),M) =
∑

u∈M

µ(σ(q), u) =
∑

u∈M

�� �
{xu : µ(q,xu)>0 & xu

σ
→u}

µ(q,xu) �	�� �
{x : µ(q,x)>0 & x

σ
→}

µ(q,x) �	
=

�
u∈M

�
{xu : µ(q,xu)>0 & xu

σ
→u}

µ(q,xu)�
{x : µ(q,x)>0 & x

σ
→}

µ(q,x)
=

�
u∈M

µ
(

q,{xu : µ(q,xu)>0 & xu
σ
→u}
)

µ
(

q,{x : µ(q,x)>0 & x
σ
→}
)

and by the induction hypothesis we have that these values of µ are well defined. Moreover, Corollary
5.5.9 guarantees that for different elements u and v in M the sets {xu : µ(q, xu) > 0 & xu

σ→ u}
and {xv : µ(q, xv) > 0 & xv

σ→ v} are disjoint (xu and xv can reach only a single process by
σ-transition). Thus, having that

⋃

u∈M

{xu : µ(q, xu) > 0 & xu
σ→ u} ⊆ {x : µ(q, x) > 0 & x

σ→}
we obtain that µ(σ(q),M) ∈ [0, 1]. �

Thus, after we proved Proposition 5.5.5, 5.5.7 and 5.5.11 we can conclude that {x : µ(p, x) >
0 & x

σ→} = {x : p ; x & x
σ→} = {x : p ; x & D(x)}. Let us denote this set byRPπ·σ(p) for

process p. We can also define a function rf : SP(pACP+
drt) 7→ [0, 1] as: rf(p) = µ(p,RPπ·σ(p)). Then

the PDF may be reformulate as µ(σ(p), y) = 1
rf(p)
· ∑

{x : p;x & x
σ
→y}

µ(p, x).We call rf(p) renormalizing

factor.

Proposition 5.5.13. The equalities given in Proposition 4.3.7 and 5.3.8 are valid in pACP+
drt. �

Proposition 5.5.14. If u is a D(pACP+
drt) process, then the only possible probabilistic transition of u

is u ; ŭ.

Proof. See the proofs of Proposition 3.3.24, 4.3.10 and 5.3.11. �

Proposition 5.5.15. If u is a D(pACP+
drt) process, then µ(u, ŭ) = 1. �

Proposition 5.5.16. If p ∈ SP(pACP+
drt) then µ(p,PT(pACP+

drt)) = 1.

160 5.5. Operational semantics

Proof. We continue the inductive proof of Proposition 4.3.13 and 5.3.21. Let assume that p ≡ σ(q)
for q ∈ SP(pACP+

drt). If ¬D(q), then µ(σ(q),DP(pACP+
drt)) = µ(σ(q), δ̆) = 1.

If D(q), then
µ(σ(q),DP(pACP+

drt)) =
∑

u∈ ��� (pACP+
drt)

1
rf(q)
· µ(q, {x : q ; x & x

σ→ u})

= 1
rf(q)
· ∑

u∈ ��� (pACP+
drt)

µ(q, {x : q ; x & x
σ→ u})

= 1
rf(q)
· µ(q,

⋃

u∈�
� (pACP+
drt)

{x : q ; x & x
σ→ u}) = rf(q)

rf(q)
= 1. �

Corollary 5.5.17.

1. Let p ∈ PT(pACP+
drt) and M ⊆ PT(pACP+

drt). Then µ(p,M) > 0 iff ∃x ∈M : p ; x;

2. If p ∈ SP(pACP+
drt) and u ∈ D(pACP+

drt) and µ(p, [ŭ]↔) = 1, then p↔ u;

3. Proposition 3.3.32 is valid for PT(pACP+
drt).

�

Proposition 5.5.18. Proposition 3.3.12 and 3.3.13 remain valid for the probabilistic bisimulation on
PT(pACP+

drt).

Properties of rf From the definition of the rf function we obtain directly:

Proposition 5.5.19. If p ∈ SP(pACP+
drt), then rf(νrel(p)) = 0. �

Proposition 5.5.20. If p, q ∈ SP(pACP+
drt), then rf(νrel(p) + σrel(q)) = 1. �

Proposition 5.5.21. rf(p tπq) = π · rf(p) + (1− π) · rf(q). �

Proposition 5.5.22. Let p, q ∈ SP(pACP+
drt) and p↔ q. Then rf(p) = rf(q).

Proof. From the assumption p ↔ q it follows that there exists a bisimulation relation R such
that (p, q) ∈ R. From the definition of rf we have that rf(p) = µ(p,RPπ·σ(p)) and rf(q) =
µ(q,RPπ·σ(q)).

Let M ∈ PT(pACP+
drt)/R such that M ∩ RPπ·σ(p) 6= ∅. Then D(M) and furthermore, since

(p, q) ∈ R,RPπ·σ(p) ∩M 6= ∅ iffRPπ·σ(q) ∩M 6= ∅. (1)
Thus, if {Mi : i ∈ I} is the greatest set of R equivalence classes such that RPπ·σ(p) ∩Mi 6= ∅

for every i ∈ I , then RPπ·σ(p) =
⋃

i∈I

(Mi ∩ RPπ·σ(p)) and it is clear that µ(p,Mi \ RPπ·σ(p)) = 0.

We obtain:
µ(p,RPπ·σ(p)) = µ(p,

⋃

i∈I

(Mi ∩RPπ·σ(p))) =
∑

i∈I

µ(p,Mi ∩RPπ·σ(p))

=
∑

i∈I

µ(p, (Mi ∩ RPπ·σ(p)) ∪ (Mi \ RPπ·σ(p))) =
∑

i∈I

µ(p,Mi).

Due to (1) we obtain µ(q,RPπ·σ(q)) =
∑

i∈I

µ(q,Mi) as well, for the same index set I . Having

µ(p,Mi) = µ(q,Mi) for each i ∈ I (because (p, q) ∈ R and Mi is an R equivalence class), we obtain
µ(p,RPπ·σ(p)) = µ(q,RPπ·σ(q)) and also rf(p) = rf(q). �

Theorem 5.5.23 (Congruence theorem of pACP+
drt - part 1). Let be p, q ∈ SP(pACP+

drt) and p↔ q.
Then σ(p)↔ σ(q).

Chapter 5. Probabilistic process algebra with time 161

Proof. Let R1 be a bisimulation relation such that (p, q) ∈ R1. We define the following relation:

R = Eq
(

R1 ∪ α
)

where α = {(σ(p),σ(q)) : p, q ∈ SP(pACP+
drt) & (p, q) ∈ R1}. Let us note that:

RO1: α ⊆ SP(pACP+
drt) × SP(pACP+

drt) and R \ R1 ⊆ SP(pACP+
drt) × SP(pACP+

drt) which implies
K ∈ DP(pACP+

drt)/R iff K ∈ DP(pACP+
drt)/R1;

RO2: If K ∈ DP(pACP+
drt)/R1, then µ(p,K) = µ(q,K), since (p, q) ∈ R1;

RO3: if (p, q) ∈ R1, then rf(p) = rf(q) from Proposition 5.5.22.

PDF. From the definition of the PDF and Proposition 5.3.18 we obtain:
µ(σ(p),M) =

∑

y∈M

µ(σ(p), y) =
∑

y∈M

1
rf(p)
· µ(p, {x : p ; x & x

σ→ y})

= 1
rf(p)
· µ(p,

⋃

y∈M

{x : p ; x & x
σ→ y})

= 1
rf(p)
· µ(p, {x : p ; x & ∃y ∈M : x

σ→ y}).
Let we denote RPπ·σ(p,M) = {x : p ; x & ∃y ∈ M : x

σ→ y}. Since RPπ·σ(p,M) ⊆
DP(pACP+

drt) there is the greatest set ofR1 equivalence classes {Kj : j ∈ J} such that for each
j ∈ J , RPπ·σ(p,M) ∩Kj 6= ∅. Then RPπ·σ(p,M) =

⋃

i∈J

(RPπ·σ(p,M) ∩Kj) and moreover

µ(p,Kj \ RPπ·σ(p,M)) = 0 for every j ∈ J . Thus we obtain:

µ(p,RPπ·σ(p,M)) = µ(p,
⋃

j∈J

(RPπ·σ(p,M) ∩Kj)) =
∑

j∈J

µ(p,RPπ·σ(p,M) ∩Kj)

=
∑

j∈J

(

µ(p,RPπ·σ(p,M) ∩Kj) + µ(p,Kj \ RPπ·σ(p,M))
)

=
∑

j∈J

µ(p,Kj).

Now let denote RPπ·σ(q,M) = {z : q ; z & ∃w ∈ M : z
σ→ w}. We investigate the

value of µ(q,M). From assumption (p, q) ∈ R and RO2 follows that {Kj : j ∈ J} is
the greatest set of R1 equivalence classes such that for each j ∈ J , RPπ·σ(q,M) ∩ Kj 6= ∅,
too. In a similar way as we did for p we can obtain µ(σ(q),M) = 1

rf(q)
· µ(q,RPπ·σ(q,M))

and µ(q,RPπ·σ(q,M)) =
∑

j∈J

µ(q,Kj). Then from RO2 and RO3 we obtain µ(σ(p),M) =

1
rf(p)
·∑

j∈J

µ(p,Kj) = 1
rf(q)
·∑

j∈J

µ(q,Kj) = µ(σ(q),M).

D predicate. If D(σ(p)), then p ; x, x σ→ y and D(y) for some x, y ∈ DP(pACP+
drt). Since

(p, q) ∈ R1, q ; z and (x, z) ∈ R1 and also z σ→ w and (y, w) ∈ R1. We conclude D(w),
which implies D(σ(q)) as well.

�

Lemma 5.5.24. Let be R a bisimulation relation. We define the following chain of relations:

R0 = R,

Ri+1 = Eq
(

Ri ∪ {(σ(p),σ(q)) : p, q ∈ SP(pACP+
drt) & (p, q) ∈ Ri}

)

, for i ≥ 1,

and let be R =
⋃

i≥0

Ri. Then R is a bisimulation relation.

162 5.5. Operational semantics

Proof. From Lemma 5.5.23 it follows that for each i ≥ 1 the relation Ri is a bisimulation relation.
Thus we obtain that {Ri : i ≥ 0} is a chain of bisimulation relations with R as the upper bound of
this set. Therefore R is an equivalence relation. We will prove that R is a bisimulation. Let us note
that

RCLR1: Ri \ R0 ⊆ SP(pACP+
drt) × SP(pACP+

drt) for each i ≥ 1. Also R \ R0 ⊆ SP(pACP+
drt) ×

SP(pACP+
drt) which implies M ∈ DP(pACP+

drt)/R iff M ∈ DP(pACP+
drt)/Ri iff M ∈

DP(pACP+
drt)/R;

RCLR2: if M ∈ DP(pACP+
drt)/R, then µ(p,M) = µ(q,M) because (p, q) ∈ Ri for all i ≥ 1;

RCLR3: if (p, q) ∈ Ri then rf(p) = rf(q).

The technical part of the proof is similar to the proof of Theorem 5.5.23. �

From now on we will refer to R as the σ closure of R.

Corollary 5.5.25. If p ∈ SP(pACP+
drt) we denote:

σ
0(p) = p,

σ
i(p) = σ(σi−1(p)), for i ≥ 1.

If p, q ∈ SP(pACP+
drt) and (p, q) ∈ R, then for each i ≥ 0, (σi(p),σi(q)) ∈ R.

Theorem 5.5.26 (Congruence theorem of pACP+
drt - part 2). ↔ is a congruence relation on

PT(pACP+
drt) with respect to the operators of pACP+

drt.

Proof. We give the part of the proof which concerns the new operators added to pBPAdrt to obtain
pACP+

drt. Also, the result that σ preserves ↔ is given in Theorem 5.5.24.
Parallel composition. Let x, y, z and w be PT(pACP+

drt) processes such that x↔ y and z↔w. So,
there exist probabilistic bisimulations R1 and R2 such that (x, y) ∈ R1 and (z, w) ∈ R2. We define a
relation Rm in the following way:

Rm = Eq(αm ∪ βm ∪ γm ∪R1 ∪R2),
where

αm = {(p ‖ q, s ‖ t) : p, q, s, t ∈ SP(pACP+
drt), (p, s) ∈ R1, (q, t) ∈ R2},

βm = {(u‖ q+v‖ p+u | v, l‖ t+k‖ s+l | k), : p, q, s, t ∈ SP(pACP+
drt), u, v, l, k ∈ DP(pACP+

drt),

(u, l) ∈ R1, (v, k) ∈ R2, (p, s) ∈ R1, (q, t) ∈ R2},
γm = {(u‖ q+u | v, l‖ t+l | k), (v‖ p+u | v, k‖ s+l | k), (u‖ q, l‖ t), (v‖ p, k‖ s), (u | v, l | k) :

p, q, s, t ∈ SP(pACP+
drt), u, v, l, k ∈ DP(pACP+

drt),
(u, l) ∈ R1, (v, k) ∈ R2, (p, s) ∈ R1, (q, t) ∈ R2}.

We investigate only the σ-transitions, the D predicate and the value of the PDF function µ for
related processes. Let us note that:

DRTM1: αm, βm and γm are equivalence relations; αm, R1 and R2 contain pairs of static processes
relevant to Rm; βm, γm, R1 and R2 contain pairs of dynamic processes relevant to Rm;

DRTM2: if (p ‖ q, s ‖ t) ∈ αm and K ∈ DP(pACP+
drt)/βm, then p ‖ q ; K iff s ‖ t ; K;

DRTM3: if p ‖ q ; K for K ∈ DP(pACP+
drt)/Rm, then K = [u‖ q + v‖ p + u | v]βm

for some
u, v such that p ; u and q ; v. Moreover, from the definition of βm we have that K =
[u]R1

[p] �
1 ‖ [q] �

2 [v]R2 ;

Chapter 5. Probabilistic process algebra with time 163

DRTM4: since R1, R2 and βm are all subsets of Rm and they are equivalence relations themselves,
if M ∈ DP(pACP+

drt)/Rm, then M =
⋃

i1∈I1

M1
i1

, M =
⋃

i2∈I2

M2
i2

and M =
⋃

j∈J

Kj for some

non-empty index sets I1, I2 and J and for some equivalence classes M 1
i1
, i1 ∈ I1, M2

i2
, i2 ∈ I2

and Kj, j ∈ J of R1, R2 and βm, respectively.

PDF. Suppose that (r, r1) ∈ Rm for some r, r1 ∈ SP(pACP+
drt) and M ∈ DP(pACP+

drt)/Rm. Then

1. If (r, r1) ∈ R � , k = 1, 2, then the result can be proved easily by use of DRTM4 and
Proposition 3.3.9 ii. (see the proof of Theorem 3.3.36 pg. 63);

2. If (r, r1) ∈ α, then r ≡ p ‖ q and r1 ≡ s ‖ t for some p, q, s, t ∈ SP(pACP+
drt)

such that (p, s) ∈ R1 and (q, t) ∈ R2. According to DRTM3 and DRTM4, Kj =

[uj]R1

[p] �
1 ‖ [q] �

2 [vj]R2 , p ; uj and q ; vj . Then from Proposition 5.5.13 (4.3.7 ii.)
follows that
µ(p ‖ q,Kj) = µ(p ‖ q, [uj]R1

[p] �
1 ‖ [q] �

2 [vj]R2) = µ(p, [uj]R1) · µ(q, [vj]R2)

= µ(s, [uj]R1) · µ(t, [vj]R2) = µ(s ‖ t, [uj]R1

[p] �
1 ‖ [q] �

2 [vj]R2) = µ(s ‖ t,Kj)
and using Proposition 3.3.9 ii. we can easily prove that µ(p ‖ q,M) = µ(s ‖ t,M).

Let us assume that (u‖ q + v‖ p + u | v, l‖ t + k‖ s + l | k) ∈ βm ⊆ Rm for some u, v, l, k ∈
DP(pACP+

drt) and p, q, s, t ∈ SP(pACP+
drt) such that (u, l) ∈ R1, (v, k) ∈ R2, (p, s) ∈ R1 and

(q, t) ∈ R2.

σ-transitions. Let us assume that u‖ q + v‖ p + u | v σ→ x. The following cases are possible:

Case u‖ q σ→ x1, v‖ p 6 σ→ and v | u 6 σ→. u σ→ x′, D(q), x1 ≡ x ≡ x′‖ σ(q) and v 6 σ→.
Therefore, l σ→ y′, (x′, y′) ∈ R1, D(t), k 6 σ→, l‖ t + k‖ s + l | k σ→ y′‖ σ(t) and
(x′‖ σ(q), y′‖ σ(t)) ∈ Rm since (σ(q),σ(t)) ∈ R2;

Case u‖ q 6 σ→, v‖ p σ→ x2 and v | u 6 σ→. This case is similar to the previous one;

Case u‖ q 6 σ→, v‖ p 6 σ→ and v |u σ→ x3. u σ→ x′, v σ→ x′′, ¬D(q), ¬D(p) and x3 ≡ x ≡ x′ | x′′.
Hence, l σ→ y′, (x′, y′) ∈ R1, k σ→ y′′, (x′′, y′′) ∈ R2, ¬D(t), ¬D(s). Thus, l‖ t+ k‖ s+

l | k σ→ y′ | y′′ and (x′ | x′′, y′ | y′′) ∈ Rm;

Case u‖ q σ→ x1, v‖ p 6 σ→ and v | u σ→ x3. Then, u σ→ x′, D(q), v σ→ x′′, ¬D(p) and x ≡ x1 +

x3 ≡ x′‖ σ(q) + x′ |x′′. Therefore, l σ→ y′, (x′, y′) ∈ R1, D(t), k σ→ y′′, (x′′, y′′) ∈ R2,
¬D(s) and l‖ t+ k‖ s+ l | k σ→ y′‖ σ(t) + y′ | y′′. Thus, (x′‖ σ(q) + x′ |x′′, y′‖ σ(t) +

y′ | y′′) ∈ Rm since (σ(q),σ(t)) ∈ R2;

Case u‖ q 6 σ→, v‖ p σ→ x2 and v | u σ→ x3. This case is similar to the previous one.

Case u‖ q σ→ x1, v‖ p σ→ x2 and v |u σ→ x3. Then, u σ→ x′, D(q), v σ→ x′′, D(p), x ≡ x1 +

x2 + x3 ≡ x′‖ σ(q) + x′′‖ σ(p) + x′ |x′′. Therefore, l σ→ y′, (x′, y′) ∈ R1, D(t),
k

σ→ y′′, (x′′, y′′) ∈ R2, D(s), l‖ t + k‖ s + l | k σ→ y′‖ σ(t) + y′′‖ σ(s) + y′ | y′′. Thus,
(x′‖ σ(q)+x′′‖ σ(p)+x′ |x′′, y′‖ σ(t)+y′′‖ σ(s)+y′ | y′′) ∈ Rm, since (σ(q),σ(t)) ∈
R2 and (σ(p),σ(s)) ∈ R1.

Let us assume that (u‖ q+u | v, l‖ t+ l | k) ∈ γm ⊆ Rm for some u, v, l, k ∈ DP(pACP+
drt) and

p, q, s, t ∈ SP(pACP+
drt) such that (u, l) ∈ R1, (v, k) ∈ R2, (p, s) ∈ R1 and (q, t) ∈ R2. And

let assume that u‖ q + u | v σ→ x. The following cases are possible:

164 5.5. Operational semantics

Case u‖ q 6 σ→ and v |u σ→ x3. Then, u σ→ x′, v σ→ x′′, ¬D(q) and x3 ≡ x ≡ x′ |x′′. Hence,
l

σ→ y′, (x′, y′) ∈ R1, k σ→ y′′, (x′′, y′′) ∈ R2, ¬D(t). Thus, l‖ t + l | k σ→ y′ | y′′ and
(x′ |x′′, y′ | y′′) ∈ Rm;

Case u‖ q σ→ x1 and v |u σ→ x3. Then, u σ→ x′, D(q), v σ→ x′′ and x ≡ x1 + x3 ≡ x′‖ σ(q) +

x′ |x′′. Therefore, l σ→ y′, (x′, y′) ∈ R1, D(t), k σ→ y′′, (x′′, y′′) ∈ R2 and l‖ t + l | k σ→
y′‖ σ(t) + y′ | y′′. Moreover, (x′‖ σ(q) + x′ |x′′, y′‖ σ(t) + y′ | y′′) ∈ Rm.

Let us assume that (v‖ p + u | v, k‖ s + l | k) ∈ γm ⊆ Rm for some u, v, l, k ∈ DP(pACP+
drt)

and p, q, s, t ∈ SP(pACP+
drt) such that (u, l) ∈ R1, (v, k) ∈ R2, (p, s) ∈ R1 and (q, t) ∈ R2.

This case is similar to the previous one.

For the cases of pairs: (u‖ q, l‖ t) ∈ γm ⊆ Rm or (v‖ p, k‖ s) ∈ γm ⊆ Rm or (u | v, l | k) ∈
γm ⊆ Rm for (u, l) ∈ R1, (v, k) ∈ R2, (p, s) ∈ R1 and (q, t) ∈ R2 see the later proofs for the
‖ and | operators.

D predicate. From the deduction rules we obtain: D(p ‖ s) iff (D(p) and D(s)) iff (D(q) and D(t))
iff D(q ‖ t). And also, D(u‖ q + v‖ p + u | v) iff (D(u) and D(q)) or (D(v) and D(p)) or
(D(u) and D(v)) iff (D(l) and D(t)) or (D(k) and D(s)) or (D(l) and D(k)) iff D(l‖ t +
k‖ s+ l | k).
In a similar way we can show that the D predicate preserves the γm relation.

Merge with memory. Let x1, x2, x3, x4, y1, y2, y3 and y4 be PT(pACP+
drt) processes such that

xi ↔ yi, i = 1, 2, 3, 4. So, there exist probabilistic bisimulations R1, R2, R3 and R4 such that
(xi, yi) ∈ Ri, for i = 1, 2, 3, 4. We define a relation Re in the following way:

Re = Eq
(

αe ∪ βe ∪ γe ∪R14 ∪R23 ∪R12 ∪R1 ∪R2 ∪R3 ∪R4

)

,
where

αe = {((p1, z1)]||[(q1, w1), (p2, z2)]||[(q2, w2)) : p1, q1, z1, w1, p2, q2, z2, w2 ∈ SP(pACP+
drt),

(p1, p2) ∈ R1, (q1, q2) ∈ R2, (z1, z2) ∈ R3, (w1, w2) ∈ R4},
βe = {(u1‖ w1 + v1‖ z1 + u1 | v1, u2‖ w2 + v2‖ z2 + u2 | v2), : z1, w1, z2, w2 ∈ SP(pACP+

drt),
u1, v1, u2, v2 ∈ DP(pACP+

drt), (u1, u2) ∈ R1,
(v1, v2) ∈ R2, (z1, z2) ∈ R3, (w1, w2) ∈ R4},

γe = {(u1‖ w1 + u1 | v1, u2‖ w2 + u2 | v2), (v1‖ z1 + u1 | v1, v2‖ z2 + u2 | v2), (u1‖ w1, u2‖ w2),
(v1‖ z1, v2‖ z2), (u1 | v1, u2 | v2) :

z1, w1, z2, w2 ∈ SP(pACP+
drt), u1, v1, u2, v2 ∈ DP(pACP+

drt),
(u1, u2) ∈ R1, (v1, v2) ∈ R2, (z1, z2) ∈ R3, (w1, w2) ∈ R4},

and R14, R23 and R12 are defined in the same way like Rm if the relation R1 and R2 are replaced
by: R1 and R4 for R14, R2 and R3 for R23 and R1 and R2 for R12.

The proof that Re is a bisimulation is similar to the previous proof for the ‖ operator.

Left merge. Let x, y, z and w be PT(pACP+
drt) processes such that x ↔ y and z ↔ w. So, there

exist probabilistic bisimulations R1 and R2 such that (x, y) ∈ R1 and (z, w) ∈ R2. We define a
relation R in the following way:

R = Eq(α ∪ β ∪ αm ∪ βm ∪ γm ∪R1 ∪R2),
where

α = {(p‖ q, s‖ t) : p, q, s, t ∈ SP(pACP+
drt), (p, s) ∈ R1, (q, t) ∈ R2},

β = {(u‖ q, v‖ t) : q, t ∈ SP(pACP+
drt), u, v ∈ DP(pACP+

drt), (u, v) ∈ R1, (q, t) ∈ R2},
and αm, βm and γm are defined as before.

Chapter 5. Probabilistic process algebra with time 165

We investigate only the σ-transitions, the D predicate and the value of the PDF function µ for
related processes. Let us note that:

DRTL1: α and β are equivalence relations; α, αm, R1 and R2 contain pairs of static processes
relevant to R; β, βm, γm, R1 and R2 contain pairs of dynamic processes relevant to R;

DRTL2: if (p‖ q, s‖ t) ∈ α and K ∈ DP(pACP+
drt)/β, then p‖ q ; K iff s‖ t ; K;

DRTL3: if p‖ q ; K for K ∈ DP(pACP+
drt)/R, then K = [u‖ q]β for some u such that p ; u.

Moreover, from the definition of β we have that K = [u]R1‖ [q] �
2
;

DRTL4: since R1, R2, βm and β are all subsets of R and they are equivalence relations themselves,
if M ∈ DP(pACP+

drt)/R, then M =
⋃

i1∈I1

M1
i1

, M =
⋃

i2∈I2

M2
i2

, M =
⋃

l∈L

Nl and M =
⋃

j∈J

Kj

for some non-empty index sets I1, I2, L and J and for some equivalence classes M 1
i1
, i1 ∈ I1,

M2
i2 , i2 ∈ I2, Nl, l ∈ L and Kj, j ∈ J of R1, R2, β and βm, respectively.

PDF. Suppose that (r, r1) ∈ R for some r, r1 ∈ SP(pACP+
drt) and M ∈ DP(pACP+

drt)/R. Then

1. If (r, r1) ∈ R � , k = 1, 2, then the result can be proved easily by use of DRTL4 and
Proposition 3.3.9 ii.;

2. If (r, r1) ∈ αm, then the result is proved above in the proof of the ‖ operator;

3. If (r, r1) ∈ α, then r ≡ p‖ q and r1 ≡ s‖ t for some p, q, s, t ∈ SP(pACP+
drt) such that

(p, s) ∈ R1 and (q, t) ∈ R2. According to DRTL3 and DRTL4, Kj = [uj]R1‖ [q] �
2

and
p ; uj. Then from Proposition 5.5.13 (4.3.7 iv.) follows that
µ(p‖ q,Kj) = µ(p‖ q, [uj]R1‖ [q] �

2
) = µ(p, [uj]R1)

= µ(s, [uj]R1) = µ(s‖ t, [uj]R1‖ [q] �
2
) = µ(s‖ t,Kj).

Using Proposition 3.3.9 ii. we can easily prove that µ(p‖ q,M) = µ(s‖ t,M).

Suppose that (u‖ q, v‖ t) ∈ β ⊆ R. Then, (u, v) ∈ R1 and (q, t) ∈ R2.

σ-transitions. If u‖ q σ→ x then u
σ→ x′, D(q) and x ≡ x′‖ σ(q). Therefore, v σ→ y′, D(t)

and (x′, y′) ∈ R1. Thus, v‖ t σ→ y′‖ σ(t) and (x′‖ σ(q), y′‖ σ(t)) ∈ β ⊆ R, because
(σ(q),σ(t)) ∈ R2.

For σ-transitions of the pairs of βm see the proof of the ‖ operator.

D predicate. D(p‖ q) iff (D(p) and D(q)) iff (D(s) and D(t)) iff D(s‖ t) for any p, q, s and t such
that (p, s) ∈ R1 and (q, t) ∈ R2.

Communication merge. Let x, y, z and w be PT(pACP+
drt) processes such that x↔ y and z↔ w.

So, there exist probabilistic bisimulations R1 and R2 such that (x, y) ∈ R1 and (z, w) ∈ R2. We
define a relation R in the following way:

R = Eq(α ∪ β ∪ αm ∪ βm ∪ γm ∪R1 ∪R2),
where

α = {(p | s, q | t) : p, q, s, t ∈ SP(pACP+
drt), (p, q) ∈ R1, (s, t) ∈ R2},

β = {(u | v, l | k) : u, v, l, k ∈ DP(pACP+
drt), (u, l) ∈ R1, (v, k) ∈ R2},

and αm, βm and γm are defined as before.
We investigate only the σ-transitions, the D predicate and the value of the PDF function µ for

related processes. Let us note that:

166 5.5. Operational semantics

DRTC1: α and β are equivalence relations; α, αm, R1 and R2 contain pairs of static processes
relevant to R; β, βm, γm, R1 and R2 contain pairs of dynamic processes relevant to R;

DRTC2: if (p | q, s | t) ∈ α and K ∈ DP(pACP+
drt)/β, then p | q ; K iff s | t ; K;

DRTC3: if p | q ; K for K ∈ DP(pACP+
drt)/β, then K = [u | v]β for some u and v such that p ; u

and q ; v. Moreover, from the definition of β we have that K = [u]R1 | [v]R2 ;

DRTC4: since R1, R2, βm and β are all subsets of R and they are equivalence relations themselves,
if M ∈ DP(pACP+

drt)/R, then M =
⋃

i1∈I1

M1
i1

, M =
⋃

i2∈I2

M2
i2

, M =
⋃

l∈L

Nl and M =
⋃

j∈J

Kj

for some non-empty index sets I1, I2, L and J and for some equivalence classes M 1
i1
, i1 ∈ I1,

M2
i2
, i2 ∈ I2, Nl, l ∈ L and Kj, j ∈ J of R1, R2, β and βm, respectively.

PDF. Suppose that (r, r1) ∈ R for some r, r1 ∈ SP(pACP+
drt) and M ∈ DP(pACP+

drt)/R. Then

1. If (r, r1) ∈ R � , k = 1, 2, then the result can be proved easily by use of DRTC4 and
Proposition 3.3.9 ii.;

2. If (r, r1) ∈ αm, then the result is proved above in the proof of the ‖ operator;

3. If (r, r1) ∈ α, then r ≡ p | q and r1 ≡ s | t for some p, q, s, t ∈ SP(pACP+
drt) such that

(p, s) ∈ R1 and (q, t) ∈ R2. According to DRTC3 and DRTC4, Kj = [uj]R1 | [vj]R2 and
p ; uj and q ; vj. Then from Proposition 5.5.13 (4.3.7v.) follows that
µ(p | q,Kj) = µ(p | q, [uj]R1 | [vj]R2) = µ(p, [uj]R1) · µ(q, [vj]R2)

= µ(s, [uj]R1) · µ(t, [vj]R2) = µ(s | t, [uj]R1 | [vj]R2) = µ(s | t,Kj).
Using Proposition 3.3.9 ii. we can easily prove that µ(p | q,M) = µ(s | t,M).

Suppose that (u | v, l | k) ∈ β ⊆ R. Then, (u, l) ∈ R1 and (v, k) ∈ R2.

σ-transitions. If u | v σ→ x then u σ→ x′, v σ→ x′′ and x ≡ x′ | x′′. Therefore, l σ→ y′, k σ→ y′′, for some
y′ and y′′ such that (x′, y′) ∈ R1 and (x′′, y′′) ∈ R2. Thus l | k σ→ y′ | y′′ and (x′ |x′′, y′ | y′′) ∈
β ⊆ R.

For the σ-transitions of the pairs of βm see the proof of the ‖ operator.

D predicate. D(p | q) iff (D(p) and D(q)) iff (D(s) and D(t)) iff D(s | t) for any p, q, s and t such
that (p, s) ∈ R1 and (q, t) ∈ R2.

Encapsulation. Let x and y be PT(pACP+
drt) processes such that x↔ y. So, there exists a proba-

bilistic bisimulations R1 such that (x, y) ∈ R1. We define a relation R in the following way:
R = Eq(α ∪ β ∪ R1),

where
α = {(∂H(p), ∂H(q)) : p, q ∈ SP(pACP+

drt), (p, q) ∈ R1},
β = {(∂H(u), ∂H(v)) : u, v ∈ DP(pACP+

drt), (u, v) ∈ R1}.
We only give the proof about the σ-transitions and the D predicate. The rest of the proof is very

similar to the proof of Theorem 4.3.15 (the part for ∂H operator).
Let us assume that (∂H(u), ∂H(v)) ∈ β ⊆ R.

σ-transitions. If ∂H(u)
σ→ x, then u σ→ x′ and x ≡ ∂H(x′). Therefore, v σ→ y′ and (x′, y′) ∈ R1 and

∂H(v)
σ→ ∂H(y′) and (∂H(x′), ∂H(y′)) ∈ β ⊆ R.

Chapter 5. Probabilistic process algebra with time 167

D predicate. D(∂H(p)) iff D(p) iff D(q) iff D(∂H(q)) for any p and q such that (p, q) ∈ R1.
�

Proposition 5.5.27. Lemma 4.3.16 and 4.3.17 remain valid in pACP+
drt. �

Theorem 5.5.28 (Soundness of pACP+
drt). Let p and q be closed pACP+

drt terms. If pACP+
drt ` p = q

then p↔ q.

Proof. We only treat the axioms which are added to pBPAdrt. Also some axioms that occur in pACP+

are not investigated here since the soundness of them is proved in Section 4.3 and the part about the
D predicate is trivial and the part about σ transition is either trivial or it is very much like the proof
of the relevant axiom in [108]. Here we reconsider only those axioms that we find non-trivial, but
we give only the part for the D and the σ transitions. Thus we do not give the proof for DRTCF ,
DRTCM2− 7, DRTCM5− 7, PrCM1− 3, DRTM2− 3, DRTD1− 2, 5 and D3− 4.

Axiom DRTM4. The relation R is defined the following way (see pg. 108):

R = Eq
(

{((p+ q)‖ s, p‖ s+ q‖ s) : p, q, s ∈ SP(pACP+
drt)}

∪ {((u+ v)‖ s, u‖ s+ v‖ s) : u, v ∈ DP(pACP+
drt), s ∈ SP(pACP+

drt)}
)

.

Suppose that ((u+v)‖ s, u‖ s+v‖ s) ∈ R for some u, v ∈ DP(pACP+
drt) and s ∈ SP(pACP+

drt).

σ-transitions. If (u+ v)‖ s σ→ x, then one of the following situations occurs:

Case u σ→ y, v 6 σ→, D(s) and x ≡ y‖ σ(s). Then u‖ s σ→ y‖ σ(s), v‖ s 6 σ→. Hence,
u‖ s+ v‖ s σ→ y‖ σ(s) and (y‖ σ(s), y‖ σ(s)) ∈ R;

Case u 6 σ→, v σ→ y, D(s) and x ≡ y‖ σ(s). This case is similar to the previous one;

Case u σ→ y1, v σ→ y2, D(s) and x ≡ (y1 + y2)‖ σ(s). Then u‖ s σ→ y1‖ σ(s), v‖ s σ→
y2‖ σ(s). So, u‖ s+v‖ s σ→ y1‖ σ(s)+y2‖ σ(s) and ((y1 +y2)‖ σ(s), y1‖ σ(s)+
y2‖ σ(s)) ∈ R.

If u‖ s+ u‖ s σ→ x, then one of the following situations occurs:

Case u‖ s σ→ x, v‖ s 6 σ→. Then D(s), u σ→ y, x ≡ y‖ σ(s) and v 6 σ→. Hence, (u +

v)‖ s σ→ y‖ σ(s) and (y‖ σ(s), y‖ σ(s)) ∈ R;

Case u‖ s 6 σ→, v‖ s σ→ x. This case is similar to the previous one;

Case u‖ s σ→ x1, v‖ s σ→ x2. Then D(s), u σ→ y1, v σ→ y2 and x ≡ y1‖ σ(s)+y2‖ σ(s).
Therefore, (u + v)‖ s σ→ (y1 + y2)‖ σ(s) and ((y1 + y2)‖ σ(s), y1‖ σ(s) +
y2‖ σ(s)) ∈ R.

D predicate. D((p+q)‖ s) iff (D(s) and (D(p) or D(q))) iff D(p‖ s+q‖ s) for any p, q, s ∈
PT(pACP+

drt).

Axiom PrCM4. In the proof of soundness of the axiom PrCM4 on pg. 112 we needed to prove
that (v1 + v2) |w1↔ v1 |w1 + v2 |w2 for any v1, v2, w1, w2 ∈ DP(pACP+) such that w1↔ w2.
There we considered the action transitions of both processes. Here we need to prove that (v1 +
v2) |w1 ↔ v1 |w1 + v2 |w2 for any v1, v2, w1, w2 ∈ DP(pACP+

drt) such that w1 ↔ w2 and we

168 5.5. Operational semantics

will investigate only the σ-transitions, since the investigation of action transitions is similar to
the one on pg. 112. Also we do not give the proof about the D predicate since it is trivial.

We define the following relation R on PT(pACP+
drt):

R = Eq
(

{
(

(v1+v2) |w1, v1 |w1+v2 |w2

)

: v1, v2, w1, w2 ∈ DP(pACP+
drt) &w1↔ w2}∪R1

)

,

where R1 is a bisimulation relation such that R1 ⊇ {(u | z, u | z′) : u, z, z′ ∈
DP(pACP+

drt) & z↔ z′, whose existence is guaranteed by the Congruence theorem of pACP+
drt.

σ-transitions. If (v1+v2) |w1
σ→ x, then v1+v2

σ→ y andw1
σ→ z and x ≡ y | z. Sincew1↔w2

it follows that w2
σ→ z′ and z ↔ z′ (here we use Proposition 5.5.8). The following cases

are possible:

Case v1
σ→ y and v2 6 σ→. v1 |w1

σ→ y | z, v2 |w2 6 σ→. So, v1 |w1 + v2 |w2
σ→ y | z and

(y | z, y | z) ∈ R;
Case v1 6 σ→ and v2

σ→ y. v1 |w1 6 σ→, v2 |w2
σ→ y | z′. Thus, v1 |w1 + v2 |w2

σ→ y | z′ and
(y | z, y | z′) ∈ R1 ⊆ R;

Case v1
σ→ y1, v2

σ→ y2 and y ≡ y1 + y2. v1 |w1
σ→ y1 | z, v2 |w2

σ→ y2 | z′. Therefore,
v1 |w1 + v2 |w2

σ→ y1 | z + y2 | z′ and
(

(y1 + y2) | z, y1 | z + y2 | z′
)

∈ R.

If v1 |w1 + v2 |w2
σ→ x, then v1 |w1

σ→ x1, w1
σ→ z and x ≡ y | z. From w1 ↔ w2

follows that w2
σ→ z′ and z↔ z′ (here Proposition 5.5.8 is used). The following cases are

possible:

Case v1 |w1
σ→ x and v2 |w2 6 σ→. v1

σ→ y, w1
σ→ z, x ≡ y | z and v2 6 σ→ (since w1↔ w2).

Thus, (v1 + v2) |w1
σ→ y | z;

Case v1 |w1 6 σ→ and v2 |w2
σ→ x. v2

σ→ y, w2
σ→ z, x ≡ y | z and v1 6 σ→. From w1 ↔ w2

it follows that w1
σ→ z′ and z ↔ z′. Thus, (v1 + v2) |w1

σ→ y | z′ and (y | z, y | z′) ∈
R1 ⊆ R;

Case v1 |w1
σ→ x1 and v2 |w2

σ→ x2. v1
σ→ y1, w1

σ→ z, v2
σ→ y2, w2

σ→ z′, x ≡ y1 | z +
y2 | z′ and z ↔ z′ Hence, (v1 + v2) |w1

σ→ (y1 + y2) | z and ((y1 + y2) | z, y1 | z +
y2 | z′) ∈ R;

Axiom PrRN1. We define a relation R in the following way:

R = Eq
(

{(σ(νrel(p)), δ) : p ∈ SP(pACP+
drt)}

)

.

First, let us note that for any p ∈ SP(pACP+
drt), ¬D(νrel(p)) holds.

PDF. σ(νrel(p)) ; δ̆ and µ(σ(νrel(p)), δ̆) = 1. Also, δ ; δ̆ and µ(δ, δ̆) = 1.

D predicate. From ¬D(νrel(p)) it follows that ¬D(σ(νrel(p))) and ¬D(δ).

Axiom PrRN2. We define a relation in the following way:

R = Eq
(

{(σ(νrel(q) + σrel(r)), r) : q, r ∈ SP(pACP+
drt)}

)

.

Chapter 5. Probabilistic process algebra with time 169

PDF. Let us note that σ(νrel(q) + σrel(r)) ; u implies r ; u which can be easily proved
following the deduction rules. Moreover, from Proposition 5.5.20 we have that rf(νrel(q)+
σrel(r)) = 1. Thus we have:
µ(σ(νrel(q) + σrel(r)), u)

= 1
rf(νrel(q)+σrel(r))

· µ(νrel(q) + σrel(r), {x : νrel(q) + σrel(r) ; x & x
σ→ u})

= µ(νrel(q) + σrel(r), {νrel(v) + σrel(w) : νrel(q) + σrel(r) ; νrel(v) + σrel(w) & νrel(v) +

σrel(w)
σ→ u})

= µ(νrel(q) + σrel(r), {νrel(v) + σrel(u) : q ; v}) = µ(νrel(q) + σrel(r),
⋃

v:q;v

{νrel(v) +

σrel(u)})
=
∑

v:q;v

µ(νrel(q) + σrel(r), νrel(v) + σrel(u))

=
∑

v:q;v

µ(q, v) · µ(r, u) =
(

∑

v:q;v

µ(q, v)
)

· µ(r, u) = µ(r, u).

The result µ(σ(νrel(q) + σrel(r)),M) = µ(r,M) for every R equivalence class follows
from Proposition 3.3.10.

D predicate. If D(σ(νrel(q) + σrel(r))), then νrel(q) + σrel(r) ; x and x σ→ y and D(y) for
some x, y ∈ DP(pACP+

drt). Therefore, q ; v, r ; y and x ≡ νrel(v) + σrel(y). To
conclude, r ; y and D(y) and using Proposition 5.5.6 we obtain D(r).
Now assume that D(r). From Proposition 5.5.7 we obtain that there exists u ∈
DP(pACP+

drt) such that r ; u and D(u). Then σrel(r) ; σrel(u) and σrel(u)
σ→ u as

well. Having that there is a v ∈ DP(pACP+
drt) such that q ; v we obtain the following:

νrel(q) + σrel(r) ; νrel(v) + σrel(u) and νrel(v) + σrel(u)
σ→ u and D(u). This yields the

result D(σ(νrel(q) + σrel(r))).

Axiom PrRN3. We define the following relation:

R = Eq
(

{(σ(νrel(q) tπr),σ(r)) : q, r ∈ SP(pACP+
drt)}

)

.

PDF. Let us note that σ(νrel(q) tπr) ; u iff σ(r) ; u and D(σ(νrel(q) tπr)) iff D(σ(r)).
Hence, if ¬D(σ(νrel(q) tπr)) and ¬D(σ(r)), then µ(σ(νrel(q) tπr), δ̆) = 1 and
µ(σ(r), δ̆) = 1. Otherwise, rf(νrel(q) tπr) = π ·rf(νrel(q))+(1−π) ·rf(r) = (1−π)rf(r).
Since
{x : νrel(q) ; x & x

σ→ u} = ∅ and also µ(νrel(q), {x : νrel(q) ; x & x
σ→ u} = 0 we

obtain:
µ(σ(νrel(q) tπr, u)) = 1

(1−π)·rf(r)
· µ(νrel(q) tπr, {x : νrel(q) tπr ; x & x

σ→ u})
= 1

(1−π)·rf(r)
·
(

π · µ(νrel(q), {x : νrel(q) ; x & x
σ→ u})

+(1− π) · µ(r, {x : r ; x & x
σ→ u})

)

= 1
(1−π)·rf(r)

· (1− π) · µ(r, {x : r ; x & x
σ→ u})

= 1
rf(r)
· µ(r, {x : r ; x & x

σ→ u}) = µ(σ(r), u).

D predicate. If D(σ(νrel(q) tπr)), then there are x, y such that νrel(q) tπr ; x and x σ→ y
and D(y). Then, νrel(q) ; x or r ; x. The first case is not possible because x σ→. So,
r ; x and x σ→ y and D(y) which implies D(σ(r)).
If D(σ(r)) then there are x, y such that r ; x and x

σ→ y and D(y). Then also
νrel(q) tπr ; x and x σ→ y and D(y). This yields D(σ(νrel(q) tπr)).

170 5.5. Operational semantics

Axiom PrRN4. We define the following relation:

R = Eq
(

{(σ((νrel(p) + σrel(q)) tπr),σ(σrel(q) tπr)) : q, r,∈ SP(pACP+
drt)}

)

.

PDF. Let us first note that σ((νrel(p) + σrel(q)) tπr) ; u iff σ(σrel(q) tπr) ; u. Second, let
us consider the sets:
S1 = {x′ + x′′ : νrel(p) + σrel(q) ; x′ + x′′ & x′ + x′′

σ→ u} and
S2 = {x′ : νrel(p) ; x′} + {x′′ : σrel(q) ; x′′ & x′′

σ→ u} 4. The fact that these
sets are equal is obvious since for all y ∈ {x′ : νrel(p) ; x′}, y 6 σ→. Having that
rf(νrel(p) + σrel(q)) = 1, for the value of the PDF function we have:
µ(σ((νrel(p) + σrel(q)) tπr, u)

= 1
rf((νrel(p)+σrel(q)) tπr)

·µ((νrel(p)+σrel(q)) tπr, {x : (νrel(p)+σrel(q)) tπr ; x& x
σ→

u})
= 1

π·rf(νrel(p)+σrel(q))+(1−π)·rf(r)
·
(

π · µ((νrel(p) + σrel(q)), {x : (νrel(p) + σrel(q)) tπr ;

x & x
σ→ u})

+(1−π)·µ(r, {x : (νrel(p)+σrel(q)) tπr ; x& x
σ→ u})

)

= 1
π+(1−π)·rf(r)

·
(

π · µ((νrel(p) + σrel(q)), {x : νrel(p) + σrel(q) ; x & x
σ→ u})

+(1− π) · µ(r, {x : r ; x & x
σ→ u})

)

= 1
π+(1−π)·rf(r)

·
(

π · µ(νrel(p) + σrel(q), S1) + (1− π) · µ(r, {x : r ; x & x
σ→ u})

)

= 1
π+(1−π)·rf(r)

·
(

π · µ
(

νrel(p) + σrel(q), S2

)

+ (1− π) · µ(r, {x : r ; x & x
σ→ u})

)

= 1
π+(1−π)·rf(r)

·
(

π ·µ(νrel(p), {x′ : νrel(p) ; x′})·µ(σrel(q), {x′′ : σrel(q) ; x′′ & x′′
σ→

u})
+(1− π) · µ(r, {x : r ; x & x

σ→ u})
)

= 1
π·rf(σrel(q))+(1−π)·rf(r)

·
(

π · µ(σrel(q), {x′′ : σrel(q) ; x′′ & x′′
σ→ u})

+(1− π) · µ(r, {x : r ; x & x
σ→ u})

)

(since rf(σrel(q) = 1)
= 1

rf(σrel(q) tπr)
· µ(σrel(q) tπr, {y : σrel(q) tπr ; y & y

σ→ u})
= µ(σ(σrel(q) tπr), u).

The result follows from Proposition 3.3.10.

D predicate. If D(σ((νrel(p)+σrel(q)) tπr)), then (νrel(p)+σrel(q)) tπr ; x and x σ→ y and
D(y) for some x, y ∈ DP(pACP+

drt). There are two possibilities:

Case r ; x. Then σrel(q) tπr ; x. Since x
σ→ y and D(y) we obtain directly

D(σ(σrel(q) tπr));

Case νrel(p) + σrel(q) ; x, νrel(p) ; x′, σrel(q) ; x′′. Then x ≡ x′ +x′′, x′ 6 σ→ and x′′ σ→
y. Thus, σrel(q) tπr ; x′′ and x′′ σ→ y and D(y) which implies D(σ(σrel(q) tπr)).

If D(σ(σrel(q) tπr)), then σrel(q) tπr ; x and x
σ→ y and D(y) for some x, y ∈

DP(pACP+
drt). There are two possibilities:

4‘+’ over sets is defined in Section 2.3.

Chapter 5. Probabilistic process algebra with time 171

Case r ; x. Then (νrel(p) + σrel(q)) tπr ; x. Since x σ→ y and D(y) it follows that
D(σ((νrel(p) + σrel(q)) tπr));

Case σrel(q) ; x. Then there is a z ∈ DP(pACP+
drt) such that νrel(p) ; z and z 6 σ→. Thus,

νrel(p) + σrel(q) ; z + x and z + x
σ→ y. And also, (νrel(p) + σrel(q)) tπr ; z + x,

z + x
σ→ y and D(y) from which D(σ((νrel(p) + σrel(q)) tπr)).

Axiom DRTM5. We define a relation R in the following way:

R = Eq
(

{(σrel(p)‖ νrel(q), δ) : p, q ∈ SP(pACP+
drt)}

∪ {(σrel(u)‖ νrel(q), δ̆) : u ∈ DP(pACP+
drt), q ∈ SP(pACP+

drt)}
)

.

PDF. Let us note that from the definition of R follows that ∀x : σrel(p)‖ νrel(q) ; x ⇒ x ∈
[

δ̆
]

R
. Thus,

µ(σrel(p)‖ νrel(q),
[

δ̆
]

R
) = µ(σrel(p)‖ νrel(q), {x : σrel(p)‖ νrel(q) ; x}) = 1 and also

µ(δ,
[

δ̆
]

R
) = 1.

D predicate. ¬D(νrel(q)) implies ¬D(σrel(p)‖ νrel(q)) and ¬D(δ) as well.

Axiom DRTM6. We define a relation R in the following way:

R = Eq
(

{(σrel(p)‖ (νrel(q) + σrel(r)), σrel(p‖ r)) : p, q, r ∈ SP(pACP+
drt)}

∪ {(σrel(u)‖ (νrel(q) + σrel(r)), σrel(u‖ r)) : u ∈ DP(pACP+
drt),

q, r ∈ SP(pACP+
drt)}

∪ R1

)

,

where R1 is a bisimulation relation such that {(u‖ σ(νrel(q) + σrel(r)), u‖ r) : u ∈
DP(pACP+

drt), q, r ∈ SP(pACP+
drt)} ⊆ R1. The existence of R1 is guaranteed by soundness

of PrRN2 and the Congruence theorem of pACP+
drt. Since R1 is a bisimulation relation we do

not investigate pairs belonging to R1.

PDF. Suppose that (σrel(p)‖ (νrel(q) + σrel(r)), σrel(p‖ r)) ∈ R for some p, q, r ∈ SP(pACP+
drt)

and M ∈ DP(pACP+
drt)/R. The following holds: p ; u iff σrel(p)‖ (νrel(q) + σrel(r)) ;

σrel(u)‖ (νrel(q) + σrel(r)) iff σrel(p‖ r) ; σrel(u‖ r). Moreover, from the definition of
R it follows that σrel(u)‖ (νrel(q) + σrel(r)) ∈ M iff σrel(u‖ r) ∈ M . For the values
of the PDF function we have: µ(σrel(p)‖ (νrel(q) + σrel(r)), σrel(u)‖ (νrel(q) + σrel(r))) =
µ(σrel(p), σrel(u)) = µ(p, u) = µ(σrel(p‖ r), σrel(u‖ r)). The result follows from Proposi-
tion 3.3.10.

σ-transitions. Suppose that (σrel(u)‖ (νrel(q) + σrel(r)), σrel(u‖ r)) ∈ R for some u ∈
DP(pACP+

drt) and q, r ∈ SP(pACP+
drt). If σrel(u)‖ (νrel(q) + σrel(r))

σ→ v, then v ≡
u‖ σ(νrel(q) + σrel(r)). If σrel(u‖ r)

σ→ z, then z ≡ u‖ r. Moreover, (u‖ σ(νrel(q) +
σrel(r)), u‖ r) ∈ R1 ⊆ R.

D predicate. It holds that D(σrel(p)) and D(νrel(q) + σrel(r)). This implies that
D(σrel(p)‖ (νrel(q) + σrel(r)) and also D(σrel(p‖ r)) for any p ∈ PT(pACP+

drt).

172 5.5. Operational semantics

Axiom PrDRTM7. We define a relation R in the following way:

R = Eq
(

{(σrel(p)‖ (νrel(q) tπr), σrel(p)‖ r) : p, q, r ∈ SP(pACP+
drt)}

∪ {(σrel(u)‖ (νrel(q) tπr), σrel(u)‖ r) : u ∈ DP(pACP+
drt), q, r ∈ SP(pACP+

drt)}
∪ R1

)

,

where R1 is a bisimulation relation such that {(u‖ σ(νrel(q) tπr), u‖ σ(r)) : u ∈
DP(pACP+

drt), q, r ∈ SP(pACP+
drt)} ⊆ R1. The existence of R1 is guaranteed by soundness

of PrRN3 and the Congruence theorem of pACP+
drt. Since R1 as a bisimulation relation we do

not investigate pairs belonging in R1.

PDF. Suppose that (σrel(p)‖ (νrel(q) tπr), σrel(p)‖ r) ∈ R for some p, q, r ∈ SP(pACP+
drt)

and M ∈ DP(pACP+
drt)/R. The following holds: p ; u iff σrel(p)‖ (νrel(q) tπr) ;

σrel(u)‖ (νrel(q) tπr) iff σrel(p)‖ r ; σrel(u)‖ r. Moreover, from the definition of R it
follows that σrel(u)‖ (νrel(q) tπr) ∈ M iff σrel(u)‖ r ∈ M . For the values of the PDF
function we have:
µ(σrel(p)‖ (νrel(q) tπr), σrel(u)‖ (νrel(q) tπr)) = µ(σrel(p), σrel(u)) = µ(p, u)
= µ(σrel(p)‖ r, σrel(u)‖ r). The result µ(σrel(p)‖ (νrel(q) tπr),M) = µ(σrel(p)‖ r,M)
follows from Proposition 3.3.10.

σ-transitions. Suppose that (σrel(u)‖ (νrel(q) tπr), σrel(u)‖ r) ∈ R for some u ∈ DP(pACP+
drt)

and q, r ∈ SP(pACP+
drt). If σrel(u)‖ (νrel(q) tπr)

σ→ v, then v ≡ u‖ σ(νrel(q) tπr). If
σrel(u)‖ r

σ→ z, then z ≡ u‖ σ(r). The conclusion follows from the definition of R, that
is, (u‖ σ(νrel(q) tπr), u‖ σ(r)) ∈ R1 ⊆ R.

D predicate. For any p ∈ PT(pACP+
drt) it holds that D(σrel(p)) and ¬D(νrel(q)). Therefore,

D(σrel(p)‖ (νrel(q) tπr)) iff D(r) iff D(σrel(p)‖ r).

Axiom PrDRTM8. We define a relation R in the following way:

R = Eq
(

{
(

σrel(p)‖ (νrel(q) + σrel(r)) tπs), σrel(p)‖ (σrel(r) tπs
)

:

p, q, r, s ∈ SP(pACP+
drt)}

∪ {
(

σrel(u)‖ (νrel(q) + σrel(r)) tπs), σrel(u)‖ (σrel(r) tπs
)

: u ∈ DP(pACP+
drt),

q, r, s ∈ SP(pACP+
drt)}

∪ R1

)

,

where R1 is a bisimulation relation such that {
(

u‖ σ((νrel(q) +
σrel(r)) tπs), u‖ σ(σrel(r) tπs)

)

: u ∈ DP(pACP+
drt), q, r, s ∈ SP(pACP+

drt)} ⊆ R1.
The existence of R1 is guaranteed by soundness of PrRN4 and the Congruence theorem of
pACP+

drt. Since R1 as a bisimulation relation we do not investigate pairs belonging to R1.

PDF. Suppose that
(

σrel(p)‖ ((νrel(q) + σrel(r)) tπs), σrel(p)‖ (σrel(r) tπs)
)

∈ R for some
p, q, r, s ∈ SP(pACP+

drt) and M ∈ DP(pACP+
drt)/R. The following holds:

p ; u iff σrel(p)‖ ((νrel(q) + σrel(r)) tπs) ; σrel(u)‖ ((νrel(q) + σrel(r)) tπs) iff
σrel(p)‖ (σrel(r) tπs) ; σrel(u)‖ (σrel(r) tπs). Moreover, from the definition of R it fol-
lows that σrel(u)‖ ((νrel(q) + σrel(r)) tπs) ∈ M iff σrel(u)‖ (σrel(r) tπs) ∈ M . For the
values of the PDF function we have:

Chapter 5. Probabilistic process algebra with time 173

µ(σrel(p)‖ ((νrel(q)+σrel(r)) tπs), σrel(u)‖ ((νrel(q)+σrel(r)) tπs)) = µ(σrel(p), σrel(u)) =
µ(p, u) = µ

(

σrel(p)‖ (σrel(r) tπs), σrel(u)‖ (σrel(r) tπs)
)

and the result follows from
Proposition 3.3.10.

σ-transitions. Suppose that (σrel(u)‖ ((νrel(q) + σrel(r)) tπs), σrel(u)‖ (σrel(r) tπs)) ∈ R for
some u ∈ DP(pACP+

drt) and q, r, s ∈ SP(pACP+
drt). If σrel(u)‖ ((νrel(q) + σrel(r)) tπs)

σ→
v, then v ≡ u‖ σ((νrel(q) + σrel(r)) tπs). If σrel(u)‖ (σrel(r) tπs)

σ→ z, then
z ≡ u‖ σ(σrel(r) tπs). The conclusion follows from the definition of R, that is,
(

u‖ σ((νrel(q) + σrel(r)) tπs), u‖ σ(σrel(r) tπs)
)

∈ R1 ⊆ R.

D predicate. For any p ∈ PT(pACP+
drt) it holds that D(σrel(p)) and D(νrel(q) + σrel(r)) and

D(σrel(r)). Therefore, D
(

σrel(p)‖ ((νrel(q)+σrel(r)) tπs)
)

and D(σrel(p)‖ (σrel(r) tπs)).

Axiom PrDRTMM4. Let p′′, q′′ ∈ SP(pACP+
drt) such that p′′↔ p′′+p′′, q′′↔ q′′+q′′ andRP(p′′) =

{x : p′′ ; x} and RP(q′′) = {y : q′′ ; y}. By Lemma 5.5.27 (4.3.17ii.) we have that
for every x1, x2 ∈ RP(p′′), x1 ↔ x2 and µ(p′′,RP(p′′)) = 1. And also for every y1, y2 ∈
RP(q′′), y1↔ y2 and µ(q′′,RP(q′′)) = 1. We will prove that for arbitrary p′, q′, p′′, q′′, z, w ∈
SP(pACP+

drt),
((νrel(p

′) + σrel(p
′′), z)]||[(νrel(q

′) + σrel(q
′′), w) ↔

(νrel(p), z)]||[(νrel(q
′), w) +

(

σrel(p
′′)‖ w + σrel(q

′′)‖ z + σrel(p
′′) |σrel(q

′′)
)

.

Probabilistic transitions. If ((νrel(p
′) + σrel(p

′′), z)]||[(νrel(q
′) + σrel(q

′′), w) ; U , then
U ≡ ((νrel(x

′) + σrel(x
′′))‖ w + (νrel(y

′) + σrel(y
′′))‖ z + (νrel(x

′) + σrel(x
′′)) | (νrel(y

′) +
σrel(y

′′)),
and p′ ; x′, q′ ; y′, x′′ ∈ RP(p′′) and y′′ ∈ RP(q′′). But then,
(νrel(p

′), z)]||[(νrel(q
′), w) +

(

σrel(p
′′)‖ w + σrel(q

′′)‖ z + σrel(p
′′) |σrel(q

′′)
)

; V ,
for V ≡ (νrel(x

′)‖ w + νrel(y
′)‖ z + νrel(x

′) | νrel(y
′)) +

(

σrel(x
′′)‖ w + σrel(y

′′)‖ z +
σrel(x

′′) |σrel(y
′′)
)

and we need to prove that
U ↔ V . (1)
If (νrel(p

′), z)]||[(νrel(q
′), w) +

(

σrel(p
′′)‖ w + σrel(q

′′)‖ z + σrel(p
′′) |σrel(q

′′)
)

; V1,
then V1 ≡ (νrel(x

′)‖ w + νrel(y
′)‖ z + νrel(x

′) | νrel(y
′)) +

(

σrel(x
′′
1)‖ w + σrel(y

′′
1)‖ z +

σrel(x
′′
2) |σrel(y

′′
2)
)

for p′ ; x′, q′ ; y′, x′′1, x
′′
2 ∈ RP(p′′) and y′′1 , y

′′
2 ∈ RP(q′′). And then,

((νrel(p
′) + σrel(p

′′), z)]||[(νrel(q
′) + σrel(q

′′), w) ; U1 for
U1 ≡ ((νrel(x

′) + σrel(x
′′
1))‖ w + (νrel(y) + σrel(y

′′
1))‖ z + (νrel(x

′) + σrel(x
′′
1)) | (νrel(y

′) +
σrel(y

′′
1)).

We need to prove that U1 ↔ V1. Because (1) is a subcase of this one, it is sufficient to
prove that U1↔ V1 for U1 and V1 as given above.

σ-transitions. If ((νrel(x
′)+σrel(x

′′))‖ w+(νrel(y
′)+σrel(y

′′))‖ z+(νrel(x
′)+σrel(x

′′)) | (νrel(y
′)+

σrel(y
′′))

σ→ u, then the following cases are possible:

Case (νrel(x
′) + σrel(x

′′
1))‖ w 6

σ→, (νrel(y
′) + σrel(y

′′
1))‖ z 6

σ→ and
(νrel(x

′) + σrel(x
′′
1)) | (νrel(y

′) + σrel(y
′′
1))

σ→ u.
¬D(z), ¬D(w) and u ≡ x′′1 | y′′1 . Then, σrel(x

′′
1)‖ w 6 σ→, σrel(y

′′
1)‖ z 6

σ→ and
σrel(x

′′
2) |σrel(y

′′
2)

σ→ x′′2 | y′′2 . Finally, x′′1 | y′′1 ↔ x′′2 | y′′2 due to the Congruence theo-
rem;

174 5.5. Operational semantics

Case (νrel(x
′) + σrel(x

′′
1))‖ w

σ→ u1, (νrel(y
′) + σrel(y

′′
1))‖ z 6

σ→ and
(νrel(x

′) + σrel(x
′′
1)) | (νrel(y

′) + σrel(y
′′
1))

σ→ u3.
¬D(z) and u ≡ (x′′1‖ σ(w)) + x′′1 | y′′1 . This yields σrel(x

′′
1)‖ w

σ→ x′′1‖ σ(w),
σrel(y

′′
1)‖ z 6 σ→ and σrel(x

′′
2) |σrel(y

′′
2)

σ→ x′′2 | y′′2 . Moreover, x′′1‖ σ(w) +
x′′1 | y′′1 ↔ x′′1‖ σ(w) + x′′2 | y′′2 due to the Congruence theorem;

Case (νrel(x
′) + σrel(x

′′
1))‖ w 6

σ→, (νrel(y
′) + σrel(y

′′
1))‖ z

σ→ u2 and
(νrel(x

′) + σrel(x
′′
1)) | (νrel(y

′) + σrel(y
′′
1))

σ→ u3.
This case is similar to the previous one;

Case (νrel(x
′) + σrel(x

′′
1))‖ w

σ→ u1, (νrel(y
′) + σrel(y

′′
1))‖ z

σ→ u2 and
(νrel(x

′) + σrel(x
′′
1)) | (νrel(y

′) + σrel(y
′′
1))

σ→ u3.
u ≡ x′′1‖ σ(w) + y′′1‖ σ(w) + x′′1 | y′′1 . Then, σrel(x

′′
1)‖ w

σ→ x′′1‖ σ(w), σrel(y
′′
1)‖ z

σ→
y′′1‖ σ(z) and σrel(x

′′
2) |σrel(y

′′
2)

σ→ x′′2 | y′′2 . Moreover, x′′1‖ σ(w) + y′′1 ‖ σ(w) +
x′′1 | y′′1 ↔ x′′1‖ σ(w) + y′′1 ‖ σ(w) + x′′2 | y′′2 due to the Congruence theorem.

If (νrel(x
′)‖ w + νrel(y

′)‖ z + νrel(x
′) | νrel(y

′)) +
(

σrel(x
′′
1)‖ w + σrel(y

′′
1)‖ z +

σrel(x
′′
2) |σrel(y

′′
2)
) σ→ v then the following cases are possible:

Case σrel(x
′′
1)‖ w 6

σ→, σrel(y
′′
1)‖ z 6

σ→ andσrel(x
′′
2) |σrel(y

′′
2)

σ→ v. ¬D(z), ¬D(w) and v ≡
x′′2 | y′′2 . Then, νrel(x

′) + σrel(x
′′
1)‖ w 6

σ→, νrel(y
′) + σrel(y

′′
1)‖ z 6

σ→ and (νrel(x
′) +

σrel(x
′′
1)) | (νrel(y

′) + σrel(y
′′
1))

σ→ x′′1 | y′′1 . Moreover, x′′2 | y′′2 ↔ x′′1 | y′′1 due to the Con-
gruence theorem;

Case σrel(x
′′
1)‖ w

σ→ v1, σrel(y
′′
1)‖ z 6

σ→ and σrel(x
′′
2) |σrel(y

′′
2)

σ→ v3. ¬D(z) and v ≡
x′′1‖ σ(w) + x′′2 | y′′2 . This yields νrel(x

′) + σrel(x
′′
1)‖ w

σ→ x′′1‖ σ(w), νrel(y
′) +

σrel(y
′′
1)‖ z 6

σ→ and
(νrel(x

′) + σrel(x
′′
1)) | (νrel(y

′) + σrel(y
′′
1))

σ→ x′′1 | y′′1 . Finally, x′′1‖ σ(w) +
x′′2 | y′′2 ↔ x′′1‖ σ(w) + x′′1 | y′′1 due to the Congruence theorem;

Case σrel(x
′′
1)‖ w 6

σ→, σrel(y
′′
1)‖ z

σ→ v2 and σrel(x
′′
2) |σrel(y

′′
2)

σ→ v3. This case is similar to
the previous one;

Case σrel(x
′′
1)‖ w

σ→ v1, σrel(y
′′
1)‖ z

σ→ v2 and σrel(x
′′
2) |σrel(y

′′
2)

σ→ v3. v ≡ x′′1‖ σ(w) +

y′′1‖ σ(z) + x′′2 | y′′2 . It implies νrel(x
′) + σrel(x

′′
1)‖ w

σ→ x′′1‖ σ(w), νrel(y
′) +

σrel(y
′′
1)‖ z

σ→ y′′1 ‖ σ(z) and (νrel(x
′) + σrel(x

′′
1)) | (νrel(y

′) + σrel(y
′′
1))

σ→ x′′1 | y′′1 . To
conclude x′′1‖ σ(w) + y′′1‖ σ(z) + x′′2 | y′′2 ↔
x′′1‖ σ(w) + y′′1 ‖ σ(z) + x′′1 | y′′1 due to the Congruence theorem.

PDF. Now let us suppose that M ∈ DP(pACP+
drt)/ ↔ . From the discussion above we

conclude that
p ≡ ((νrel(p

′) + σrel(p
′′), z)]||[(νrel(q

′) + σrel(q
′′), w) ; M iff

q ≡ (νrel(p
′), z)]||[(νrel(q

′), w) +
(

σrel(p
′′)‖ w + σrel(q

′′)‖ z + σrel(p
′′) |σrel(q

′′)
)

; M .
Also,
((νrel(x

′)+σrel(x
′′
1))‖ w+(νrel(y

′)+σrel(y
′′
1))‖ z+(νrel(x

′)+σrel(x
′′
1)) | (νrel(y

′)+σrel(y
′′
1)) ∈

M , iff
(νrel(x

′)‖ w + νrel(y
′)‖ z + νrel(x

′) | νrel(y
′)) +

(

σrel(x
′′
1)‖ w + σrel(y

′′
1)‖ z +

σrel(x
′′
2) |σrel(y

′′
2)
)

∈M
for p′ ; x′, q′ ; y′, x′′1, x′′2 ∈ RP(p′′) and y′′1 , y′′2 ∈ RP(q′′). Moreover, the subset of
reachable elements from p in M is contained in the set:

Chapter 5. Probabilistic process algebra with time 175

K =
(

νrel([x
′]↔) + σrel(RP(p′′)

)

z ‖ w
(

νrel([y
′]↔) + σrel(RP(q′′)

)

⊂ M . The
subset of reachable elements from q in M is contained in the set:
N = νrel([x

′]↔)z ‖ wνrel([y
′]↔) +

(

σrel(RP(p′′))‖ w + σrel(RP(q′′))‖ z +
σrel(RP(p′′)) |σrel(RP(q′′))

)

⊂M .
Having that µ(p′′,RP(p′′)) = 1 and µ(q′′,RP(q′′)) = 1 we obtain:
µ
(

((νrel(p
′) + σrel(p

′′), z)]||[(νrel(q
′) + σrel(q

′′), w),M
)

= µ
(

((νrel(p
′) + σrel(p

′′), z)]||[(νrel(q
′) + σrel(q

′′), w), K
)

= µ(p′, [x′]↔) · µ(q′, [y′]↔) · µ(p′′,RP(p′′)) · µ(q′′,RP(q′′))
= µ(p′, [x′]↔) · µ(q′, [y′]↔).

And also,

µ
(

(νrel(p
′), z)]||[(νrel(q

′), w) +
(

σrel(p
′′)‖ w + σrel(q

′′)‖ z + σrel(p
′′) |σrel(q

′′)
)

,M
)

= µ
(

(νrel(p
′), z)]||[(νrel(q

′), w) +
(

σrel(p
′′)‖ w + σrel(q

′′)‖ z +

σrel(p
′′) |σrel(q

′′)
)

, N
)

= µ(p′, [x′]↔)·µ(q′, [y′]↔)·µ(p′′,RP(p′′))·µ(q′′,RP(q′′))·µ(p′′,RP(p′′))·
µ(q′′,RP(q′′))

= µ(p′, [x′]↔) · µ(q′, [y′]↔).

D predicate. From D(σrel(p
′′)) and D(σrel(q

′′)) it follows that D
(

((νrel(p
′) +

σrel(p
′′), z)]||[(νrel(q

′) + σrel(q
′′), w)

)

. Also since D(σrel(p
′′) |σrel(q

′′)) we have
D
(

(νrel(p
′), z)]||[(νrel(q

′), w) + (σrel(p
′′)‖ w + σrel(q

′′)‖ z + σrel(p
′′) |σrel(q

′′))
)

as
well. Then, since D

(

(νrel(x
′) + σrel(x

′′
1)) | (νrel(y

′) + σrel(y
′′
1))
)

we obtain D
(

(νrel(x
′) +

σrel(x
′′
1))‖ w + (νrel(y

′) + σrel(y
′′
1))‖ z + (νrel(x

′) + σrel(x
′′
1)) | (νrel(y

′) + σrel(y
′′
1))
)

.

And D

(

(νrel(x
′)‖ w + νrel(y

′)‖ z + νrel(x
′) | νrel(y

′)) +
(

σrel(x
′′
1)‖ w + σrel(y

′′
1)‖ z +

σrel(x
′′
2) |σrel(y

′′
2))
)

since D(σrel(x
′′
2) |σrel(y

′′
2)).

Axiom PrDRTMM5. Let p, q ∈ SP(pACP+
drt) such that p ↔ p + p, q ↔ q + q and RP(p) =

{x : p ; x}, RP(q) = {y : q ; y}. From Lemma 5.5.27 (4.3.17 ii.) we have that
for every x1, x2 ∈ RP(p), x1 ↔ x2 and µ(p,RP(p)) = 1. And also for every y1, y2 ∈
RP(q), y1 ↔ y2 and µ(q,RP(q)) = 1. We will prove that for arbitrary p, q ∈ SP(pACP+

drt),
(νrel(p), z)]||[(νrel(q), w)↔ νrel(p)‖ z + νrel(q)‖ w + νrel(p) | νrel(q).

Probabilistic transitions. If (νrel(p), z)]||[(νrel(q), w) ; u, then u ≡ νrel(x)‖ w + νrel(y)‖ z +
νrel(x) | νrel(y), for some x ∈ RP(p) and y ∈ RP(q). Then, νrel(p)‖ z + νrel(q)‖ w +
νrel(p) | νrel(q) ; v, for v ≡ νrel(x)‖ w + νrel(y)‖ z + νrel(x) | νrel(y) and u↔ v.
If νrel(p)‖ z + νrel(q)‖ w + νrel(p) | νrel(q) ; v1, then v1 ≡ νrel(x)‖ w + νrel(y)‖ z +
νrel(x

′) | νrel(y
′) for some x, x′ ∈ RP(p) and y, y′ ∈ RP(q). And then,

(νrel(p), z)]||[νrel(q), w) ; u1 for u1 ≡ νrel(x)‖ w+νrel(y)‖ z+νrel(x) | νrel(y) and v1↔ u1

according to the Congruence theorem of pACP+
drt.

PDF. Now let us suppose that M ∈ DP(pACP+
drt)/ ↔ . From the discussion above we

conclude that
(νrel(p), z)]||[(νrel(q), w) ; M iff νrel(p)‖ w + νrel(q)‖ z + νrel(p) | νrel(q) ; M and
νrel(x)‖ w + νrel(y)‖ z + νrel(x

′) | νrel(y
′) ∈M , iff

νrel(x)‖ w + νrel(y)‖ z + νrel(x) | νrel(y) ∈M
for x, x′ ∈ RP(p) and y, y′ ∈ RP(q). Then,

176 5.5. Operational semantics

µ
(

(νrel(p), z)]||[(νrel(q), w),M
)

= µ
(

(νrel(p), z)]||[(νrel(q), w), {νrel(x)‖ w + νrel(y)‖ z + νrel(x) | νrel(y) :
x ∈ RP(p) & y ∈ RP(q)}

)

= µ
(

(νrel(p), z)]||[(νrel(q), w), νrel(RP(p))z]||[wνrel(RP(q))
)

= µ(p,RP(p)) · µ(q,RP(q)) = 1 and
µ(νrel(p)‖ w + νrel(q)‖ z + νrel(p) | νrel(q),M)

= µ(νrel(p)‖ w+νrel(q)‖ z+νrel(p) | νrel(q), {νrel(x)‖ w+νrel(y)‖ z+νrel(x
′) | νrel(y

′) :
x, x′ ∈ RP(p) & y, y′ ∈ RP(q)})

= µ(p,RP(p)) · µ(q,RP(q)) · µ(p,RP(p)) · µ(q,RP(q)) = 1.

D predicate. Both ¬D
(

(νrel(p), z)]||[(νrel(q), w)
)

and ¬D
(

νrel(p)‖ w + νrel(q)‖ z +
νrel(p) | νrel(q)

)

since ¬D(νrel(p)) and ¬D(νrel(q)).

Axiom PrDRTMM6. We define a relation R in the following way:

R = Eq
(

{
(

(νrel(p) + σrel(q), z)]||[(νrel(r), w), (νrel(p), z)]||[(νrel(r), w) + σrel(q)‖ w
)

: p, q, r, z, w ∈ SP(pACP+
drt)}

∪ {
(

(νrel(u) + σrel(v))‖ w + νrel(t)‖ z + (νrel(u) + σrel(v)) | νrel(t),
νrel(u)‖ w + νrel(t)‖ z + νrel(u) | νrel(t) + σrel(v)‖ w

)

: u, v, t ∈ DP(pACP+
drt), z, w ∈ SP(pACP+

drt)}
)

,

Let us note that p ; x, q ; y, r ; t iff

(νrel(p)+σrel(q), z)]||[(νrel(r), w) ; (νrel(x)+σrel(y))‖ w+νrel(t)‖ z+(νrel(x)+σrel(y)) | νrel(t)
iff

(νrel(p), z)]||[(νrel(r), w) + σrel(q)‖ w ; νrel(x)‖ w + νrel(t)‖ z + νrel(x) | νrel(t) + σrel(y)‖ w.
And ifM ∈ DP(pACP+

drt), then (νrel(x)+σrel(y))‖ w+νrel(t)‖ z+(νrel(x)+σrel(y)) | νrel(t) ∈M
iff νrel(x)‖ w + νrel(t)‖ z + νrel(x) | νrel(t) + σrel(v)‖ w ∈M .

PDF. The following equalities are valid:
µ
(

νrel(p) + σrel(q), z)]||[(νrel(r), w), (νrel(x) + σrel(y))‖ w
+ νrel(t)‖ z + (νrel(x) + σrel(y)) | νrel(t)

)

= µ
(

νrel(p) + σrel(q), νrel(x) + σrel(y)
)

· µ(νrel(r), νrel(t))
= µ(p, x) · µ(q, y) · µ(r, t) and

µ
(

(νrel(p), z)]||[(νrel(r), w) + σrel(q)‖ w, νrel(x)‖ w
+ νrel(t)‖ z + νrel(x) | νrel(t) + σrel(y)‖ w

)

= µ
(

(νrel(p), z)]||[(νrel(r), w), νrel(x)‖ w
+νrel(t)‖ z+νrel(x) | νrel(t)

)

·µ(σrel(q)‖ w, σrel(y)‖ w)
= µ(νrel(p), νrel(x)) · µ(νrel(r), νrel(t)) · µ(σrel(q), σrel(y))
= µ(p, x) · µ(r, t) · µ(q, y).

The result follows from Proposition 3.3.10.

σ-transitions. We observe that only the following transitions are possible only if D(w):
(νrel(x) + σrel(y))‖ w + νrel(t)‖ z + (νrel(x) + σrel(y)) | νrel(t)

σ→ y‖ σ(w) and
νrel(x)‖ w + νrel(t)‖ z + νrel(x) | νrel(t) + σrel(y)‖ w

σ→ y‖ σ(w) and
(y‖ σ(w), y‖ σ(w)) ∈ R.

D predicate. D
(

νrel(p) + σrel(q), z)]||[(νrel(r), w)
)

iff D(w) and D(z) iff
D((νrel(p), z)]||[(νrel(r), w) + σrel(q)‖ w). And also, D

(

(νrel(u) + σrel(v))‖ w +

Chapter 5. Probabilistic process algebra with time 177

νrel(t)‖ z + (νrel(u) + σrel(v)) | νrel(t)
)

iff D(w) iff D
(

νrel(u)‖ w + νrel(t)‖ z +
νrel(u) | νrel(t) + σrel(v)‖ w

)

.

Axiom PrDRTMM7. We define a relation R in the following way:

R = Eq
(

{
(

(νrel(p), z)]||[(νrel(q) + σrel(r), w), (νrel(p), z)]||[(νrel(r), w) + σrel(q)‖ z
)

: p, q, r, z, w ∈ SP(pACP+
drt)}

∪ {
(

νrel(u)‖ w + (νrel(v) + σrel(t))‖ z + νrel(u) | (νrel(v) + σrel(t)),
νrel(u)‖ w + νrel(v)‖ z + νrel(u) | νrel(v) + σrel(v)‖ w

)

: u, v, t ∈ DP(pACP+
drt), z, w ∈ SP(pACP+

drt)}
)

.

The proof goes in a similar way like the proof of the axiom PrDRTMM6.
�

Completeness of pACP+
drt

Next, we prove the completeness property of pACP+
drt. As we did in Section 4.3.1 we do not use

the direct method but we obtain the completeness property by showing that TpACP+
drt

is a conservative
operational extension of TpBPAdrt

. First we will show that we cannot use the method of stratification
because TpACP+

drt
is not stratifiable. Since the method of stratification is not applicable on TpACP+

drt
we employ the technique of reduction which was briefly introduced in Section 2.3. By this we will
show that: 1. the deduction system TpACP+

drt
is meaningful, 2. TpACP+

drt
is a operational conservative

extension of TpBPAdrt
, and 3. pACP+

drt is complete axiomatization with respect to the modelMpACP+
drt

.

Proposition 5.5.29. TpACP+
drt

is not stratifiable.

Proof. Assume that S is a stratification on TpACP+
drt

. Then, for any closed substitution of a deduction
rule d, if φ ∈ pprem(d) and ψ ∈ nprem(d) then S(φ) ≤ S(conc(d)) and S(ψ) < S(conc(d)). Now,
take the instances of rules:

¬D(σ(c))

σ(σ(c)) ; δ̆
(R54)

σ(σ(c)) ; δ̆, δ̆
σ→ t,D(t)

D(σ(σ(σ(c))))
(R51)

c ; s, s
σ→ σ(σ(σ(c))),D(σ(σ(σ(c))))

D(σ(c))
(R51)

Therefore, for S should hold:

S(D(σ(c)))
R54
< S(σ(σ(c)) ; δ̆)

R51
≤ S(D(σ(σ(σ(c)))))

R51
≤ S(D(σ(c))).

It is clear that S cannot satisfy this inequality. �

Remark 5.5.30. One can notice that the problem to define a stratification arises from the condition
that all possible (unrestricted) substitutions of the rules have to be checked. If we could freely use
the observation, made previous, about alternation of SP(pACP+

drt) and DP(pACP+
drt) processes in the

transitions, as stated in Remark 5.3.23, then we will be able to define a map which satisfies the
properties required for stratification. However, this is not allowed because by doing so we will restrict
ourselves to those instances of the deduction rules which the restriction of Remark 5.3.23 allows.

178 5.5. Operational semantics

Now, we present results for TpACP+
drt

which bring us to the desired conclusion: TpACP+
drt

is a con-
servative extension of TpBPAdrt

. It will be done in a few steps: 1. we reduce TpACP+
drt

to a system
Red1(TpACP+

drt
), 2. we define a function M on the set of closed terms over ΣpACP+

drt
and using it we

will prove a property for transitions in the reduced system which will show useful in the next step,
3. using the function M and the property proved in the previous step we define an ordering of the
literals in TpACP+

drt
, 4. finally, on the basis of the previous steps we are able to define a stratification for

Red1(TpACP+
drt

) which provides us with sufficient results to make the final conclusion.

Definition 5.5.31. Red1(TpACP+
drt

) = (Σ̆pACP+
drt
, Reduce(DRpACP+

drt
)) is a reduction of TpACP+

drt
as de-

fined in Definition 2.3.14.

Definition 5.5.32. A map M : C(Σ̆pACP+
drt

) → ω2, from the set of closed terms over the signature

Σ̆pACP+
drt

to the ordinal ω2, is defined in the following way:

1. M(a) = M(ă) = 0, for a ∈ Aδ;

2. M(a) = M(ă) = ω, for a ∈ Aδ;

3. M(νrel(t)) = M(∂H(t)) = M(σ(t)) = M(t), for t ∈ C(Σ̆pACP+
drt

);

4. M(σrel(t)) = M(t) + 1, for t ∈ C(Σ̆pACP+
drt

);

5. M(t + s) = M(t tπs) = M(t ‖ s) = M(t‖ s) = M(t | s) = max{M(t),M(s)}, for t, s ∈
C(Σ̆pACP+

drt
);

6. M(t · s) = M(t) +M(s), for t, s ∈ C(Σ̆pACP+
drt

);

7. M((t, z)]||[(s, w)) = max{M(t),M(s),M(z),M(w)}, for t, s, z, w ∈ C(Σ̆pACP+
drt

);

It is obvious that M does not count the number of time steps that a process can perform. Actually,
it gives the number of time steps that the process might perform if it is not forced to deadlock as
soon as a time conflict occurs. (Here we mean situations as: νrel(σrel(t)) = δ, σrel(t)‖ νrel(s) = δ or
νrel(t) |σrel(s) = δ.)

Lemma 5.5.33. If t, u ∈ C(Σ̆pACP+
drt

), then if t ; u ∈ −→Pos(T
pACP+

drt
) or t a→ u ∈ −→Pos(T

pACP+
drt

) or

t ; u ∈ −→Pos(T
pACP+

drt
), then M(t) ≥M(u).

Proof. Note that Pos(TpACP+
drt

) contains all closed instances of the rules from TpACP+
drt

but without
negative premises. Hence, we need to check if the conclusion of each rule satisfies the condition
under the assumption that all positive premises in that rules do it as well. For most rules the proof is
trivial, so we give only the most interesting cases. Assume that t, s, u, v, z, w ∈ C(Σ̆pACP+

drt
).

R1.1-R1.8 for each of these rules the check is trivial;

R3. M(t) ≤M(t) +M(s) = M(t · s);

R13. if M(u) ≤M(t), then M(u · s) = M(u) +M(s) ≤M(t) +M(s) = M(t · s);

Chapter 5. Probabilistic process algebra with time 179

R16. if M(u) ≤M(t) and M(v) ≤ M(s), then
M(u‖ s+ v‖ t+u | v) = max{max{M(u),M(s)},max{M(v),M(t)},max{M(u),M(v)}}

≤ max{max{M(t),M(s)},max{M(s),M(t)},max{M(t),M(s)}}
= max{M(t),M(s)} = M(t ‖ s);

R17. if M(u) ≤M(t) and M(v) ≤ M(s), then
M(u‖ w+v‖ z+u | v) = max{max{M(u),M(w)},max{M(v),M(z)},max{M(u),M(v)}}

≤ max{max{M(t),M(w)},max{M(s),M(z)},max{M(t),M(s)}}
= max{M(t),M(s),M(z),M(w)} = M((t, z)]||[(s, w));

R21. if M(u) ≤M(t), then M(σrel(u)) = M(u) + 1 ≤M(t) + 1 = M(σrel(t));

R35. if M(u) ≤ M(t), then M(u‖ s) = max{M(u),M(s)} ≤ max{M(t),M(s)} =
max{M(t),M(σ(s))} = M(t‖ σ(s));

R43. if M(u) ≤ M(t), then M(u‖ s) = max{M(u),M(s)} ≤ max{M(t),M(s)} =
max{M(t),M(σ(s))} = M(t‖ σ(s));

R25. M(t) ≤ M(t) + 1 = M(σrel(t)). (Note that any instantiation of this rule in Pos(TpACP+
drt

) has

the form: σrel(t)
σ→ t, since the negative premise is removed.)

R26. if M(u) ≤ M(t), then M(u) ≤ M(t) ≤ max{M(t),M(s)} = M(t + s). (Also, the negative
premise is omitted.)

R34. M(δ̆) = 0 ≤M(σ(t)).
�

Definition 5.5.34. On the basis of the function M we define a pre-order on the set of literals in the
following way:

1. (t
σ→ u) ≤ (t′

σ→ u′) iff
{

M(t) < M(t′)
M(t) = M(t′) & n+(t) ≤ n+(t′)

2. (D(t)) ≤ (t′ ; u′) iff
{

M(t) < M(t′)
M(t) = M(t′) & nσ(t) ≤ nσ(t′)

3. if R 6= σ→ or R′ 6= σ→, then (tRu) ≤ (t′R′u′) iff M(t) ≤M(t′);

4. if P 6= D and R′ 6=;, then Pt ≤ (t′R′u′) iff M(t) ≤M(t′);

5. for any R ∈ {;,
a→, σ→} and P, P ′ ∈ {D,

a→ √},
(tRu) ≤ (P ′t′) iff M(t) ≤M(t′) and

(Pt) ≤ (P ′t′) iff M(t) ≤M(t′),

where n+(t) and nσ(t) denote the number of + and σ operators in t respectively.
This pre-order induces an equivalence relation on the set of literals as:

φ ≈ ψ iff φ ≤ ψ and ψ ≤ φ.

For some ordinal α we define implicitly a function S : C(Σ̆pACP+
drt

)→ α as: for literals φ and ψ

180 5.5. Operational semantics

1. if φ ≈ ψ, then S(φ) = S(ψ);

2. if φ ≤ ψ and φ 6≈ ψ, then S(φ) < S(ψ).

Lemma 5.5.35. S is a stratification of Red1(TpACP+
drt

).

Proof. We need to investigate all rule (more precisely all instances of the rules), but we just present
the most interesting cases and for the rest the proof is trivial. Let t, s, u, v, z, w ∈ C(Σ̆pACP+

drt
).

R13. Since M(t) ≤M(t · s) follows that t ; u ≤ t · s ; u · s and also S(t ; u) ≤ S(t · s ; u · s);

R26. Since M(t) ≤M(t · s) = M(t) +M(s) follows that t σ→ u ≤ t · s σ→ u · s. Now,

1. if M(t) < M(t ·s), then ¬
(

(t ·s σ→ u ·s) ≤ (t
σ→ u)

)

, from which S(t
σ→ u)) < S(t ·s σ→

u · s);
2. if M(t) = M(t · s), then since by the definition n+(t) = n+(t · s), (t

σ→ u) ≤ t · s σ→ u · s,
but also (t · s σ→ u · s) ≤ (t

σ→ u), from which S(t
σ→ u)) = S(t · s σ→ u · s);

R27. Since M(t) ≤M(t+ s) = max{M(t),M(s)} follows that t σ→ u ≤ t+ s
σ→ u+ v. Moreover

from n+(t) < n+(t+ s) follows that S(t
σ→ u) < S(t + s

σ→ u+ v);

R33. From Lemma 5.5.33 Red1(TpACP+
drt

) contains only the instances of this rule for which M(v) ≤
M(u) ≤ M(t) (where t ; u and u σ→ v are the premises of the rule). Hence, (t ; u) ≈
(σ(t) ; v) and (u

σ→ v) ≤ (σ(t) ; v) from which S(t ; u) ≤ S(σ(t) ; v) and
S(u

σ→ v) ≤ S(σ(t) ; v);

R43. In a similar way as above from Lemma 5.5.33 follows that Red1(TpACP+
drt

) contains only the

instances of this rule for which M(v) ≤ M(u) ≤ M(t) (where t ; u and u σ→ v are the
premises of the rule). Hence, (t ; u) ≈ (D(σ(t))) (because M(t) = M(σ(t))), (u

σ→
v) ≤ (D(σ(t))) (because M(u) ≤ M(σ(t))) and (D(v)) ≤ (D(σ(t))) (because M(v) ≤
M(σ(t))). Thus, S(t ; u) ≤ S(D(σ(t))), S(u

σ→ v) ≤ S(D(σ(t))) and S(D(v)) ≤
S(D(σ(t)));

R25. Since M(t) < M(σrel(t)) = M(t) + 1 follows that (t ; u) ≤ σrel(t)
σ→ t (notice that u is an

arbitrary closed term) and ¬
(

σrel(t)
σ→ t ≤ (t ; u)

)

. Therefore, S(t ; u) < S(σrel(t)
σ→ t);

R26. For the positive premise the proof is easy. We only prove the case for the negative premise s 6 σ→.
Because M(s) ≤ M(t+ s) follows that (s

σ→ v) ≤ (t+ s
σ→ u) for an arbitrary closed term v.

Moreover, since n+(s) < n+(t + s) it is obvious that ¬
(

(t + s
σ→ u) ≤ (s ; v)

)

. Therefore,
S(s

σ→ v) < S(t+ s
σ→ u);

R34. Since M(t) = M(σ(t)) and nσ(p) < nσ(σ(p)) follows that (D(t)) ≤ (σ(t) ; δ̆) but
¬
(

(σ(t) ; δ̆) ≤ (D(t))
)

. Therefore, S((D(t))) < S(σ(t) ; δ̆).
�

By Lemma 2.3.16 we conclude that:

Lemma 5.5.36. Redα+1((TpACP+
drt

) contains only rules with positive premises and −→Red1(T
pACP+

drt
) is

associated with TpACP+
drt

. �

Chapter 5. Probabilistic process algebra with time 181

In other words the lemma says that the deduction system of pACP+
drt is meaningful since the

relation that the system defines exists and it is unique. Furthermore, by Theorem 2.3.17 using the
result in Lemma 5.5.36 we obtain:

Lemma 5.5.37. TpACP+
drt

is an operational conservative extension of TpBPAdrt
. �

From this point we follows the same steps as in Section 4.3.1.

Lemma 5.5.38. The term-deduction system TpACP+
drt

is an operationally conservative extension up to
the probabilistic bisimulation of the term-deduction system TpBPAdrt

.

Proof. The conclusion is obtained from Lemma 5.5.37 in the same way as the conclusion of Lemma
4.3.20 is derived from Lemma 4.3.19. �

Lemma 5.5.39. (Conservativity of pACP+
drt with respect to pBPAdrt) pACP+

drt is an equationally
conservative extension of pBPAdrt, that is, if t and s are closed pBPAdrt terms, then pBPAdrt ` t = s⇔
pACP+

drt ` t = s.

Proof. According to the used method we need to verify that:

- TpACP+
drt

is an operationally conservative extension of TpBPAdrt
up to probabilistic bisimulation (see

Lemma 5.5.38);

- pBPAdrt is a complete axiomatization with respect to the bisimulation model (see Theorem 5.3.36);

- TpACP+
drt

with respect to the probabilistic bisimulation equivalence induces a model of pACP+
drt (see

Theorem 5.5.28).
�

And finally we conclude that:

Theorem 5.5.40 (Completeness theorem for pACP+
drt). If t and s are closed pACP+

drt terms, then
MpACP+

drt
` t↔ s⇒ pACP+

drt ` t = s.

Proof. Completeness follows immediately from the following results:

- pACP+
drt has the elimination property for pBPAdrt (see Theorem 5.4.6);

- pACP+
drt is an equationally conservative extension of pBPA (see Lemma 5.5.39).

�

182 5.5. Operational semantics

Chapter 6

Abstraction

6.1 Introduction

In this chapter, we turn our attention to the problem of verification of probabilistic systems. Infor-
mally, the procedure of verification of concurrent systems in a process algebraic framework covers the
following steps: 1. model the desired behaviour of the system including certain requirements (spec-
ification S); 2. model the system behaviour (implementation I); 3. transform the implementation
by use of hiding the internal activities, fairness assumption, encapsulation and other feasible methods
and check if it meets the specification from the previous phase. The first two phases reduce to the con-
cept of specification of the system behaviour, the main subject of the previous chapters of this thesis.
The third problem has always been of large interest and has triggered a lot of attention in the field of
formal methods. Translated into the (process) algebra language it means that certain operators need
to be defined together with a set of axioms or conditional axioms that help to derive equality between
specification S and some transformation of the implementation I ′ (PA ` S = I ′). Semantically,
an appropriate equivalence relation should be defined that relates desired processes and corresponds
to “=” in the axiomatization. Fortunately, these questions are satisfactorily answered in the area of
(non-deterministic non-probabilistic) concurrent systems, just a couple of examples: [37, 105, 13]
and many models have been proposed as results of a long history of research, particularly on differ-
ent equivalence relations (weak, branching, semi-branching, 2/3 nested bisimulation, η bisimulation,
delay bisimulation, normed simulation, trace equivalence) [89, 59, 90, 21, 63, 27, 57, 61]. Since
probabilistic systems appear as an extension of non-deterministic systems, the attempt to treat the
problem of verification of probabilistic systems following the line of verification techniques for the
non-probabilistic case becomes very natural. Several equivalence relations that abstract away from
internal steps in probabilistic systems with the origins in the existing equivalence relations for non-
probabilistic case have been proposed [80, 29, 100, 95, 30, 103]. Of course, they have to be enriched
by a mechanism that captures probabilistic behaviour, as this was the case with the probabilistic vari-
ant of strong bisimulation in Definition 3.3.11. Thus, besides that two related processes mimic each
other on observable actions they can perform, basically they are required to have the same probabili-
ties of reaching a certain set of processes. These definitions (except [80] that we discuss later) have the
following in common: all sub-processes reachable from the original processes have to be investigated,
checked w.r.t. their reachability probabilities and related on a basis of the obtained information.

We go beyond this restriction and start from a weaker assumption: not all sub-processes have
to be taken into account and checked as to their probabilities. Put differently, for given processes
that should be decided whether they are related or not, we propose a criterion by which a set of sub-
processes is selected and probabilities are investigated only on the elements of this set. For the rest

183

184 6.2. Abstraction in non-probabilistic process algebra

of the sub-processes only their branching structure is investigated but not the probability measure.
The definition we present here is based on branching bisimulation and the criterion mentioned is
defined only for fully probabilistic processes. The proposed equivalence relation on fully probabilistic
systems basically is a weaker variant of the probabilistic equivalence relation defined in [29]. We will
justify our notion of equivalence by means of a couple of examples. Although we did not investigate
it, we believe that a similar criterion can be established on the other probabilistic equivalence relations
as the ones in [100, 95].

In the sequel we shortly present the basic concept of abstraction as mainly taken in process alge-
bras BPA and ACP and the concept of branching bisimulation. Later we will present an axiomatization
of probabilistic process algebra with abstraction together with a set of verification rules that are added
to model the fairness assumption. A larger part of the chapter covers the definition of the proba-
bilistic branching bisimulation and the preparatory steps towards its introduction as well as results
concerning the compositional aspects of this relation. Finally, we show that this equivalence rela-
tion is decidable for regular processes (processes with finitely many sub-processes) and present an
algorithm that decides whether two given probabilistic systems are equivalent.

6.2 Abstraction in non-probabilistic process algebra

The issue of abstraction in BPA (ACP) is brought in by the constant τ and the unary operator τI for
I ⊆ A. The τ action means an internal activity of one process; an observer cannot “see” the silent τ
action. We write Aτ for A ∪ {τ}. The abstraction operator τI

is a renaming operator that renames all actions from I into τ . The set I contains all actions that
we want to abstract from. Informally, all actions that can be performed by components of the system
and are “invisible” for the outside world (environment) are contained in the set I . On the contrary,
the actions from A \ I are considered observable, external and visible to the outside world. The laws
for the τ constant are given in Table 6.1 and the axioms for the τI operator are shown in Table 6.2.

x · τ = x B1
x · (τ · (y + z) + y) = x · (y + z) B2

Table 6.1: τ−axioms.

τI(a) = a (a /∈ I) TI1
τI(a) = τ (a ∈ I) TI2
τI(x + y) = τI(x) + τI(y) TI3
τI(x · y) = τI(x) · τI(y) TI4

Table 6.2: Axioms for the abstraction operator.

In order to prove the correctness of a given specification of one concurrent system fairness as-
sumptions about the resolution of the non-deterministic choices are necessary. Algebraically such
fairness assumption is described through the use of Koomen’s Fairness Abstraction Rules (KFAR)
(e.g. [36, 13]). The KFARs express exactly the idea that, due to some fairness mechanism, abstrac-
tion from internal steps will yield an external step after finitely many repetitions. In Table 6.3 the
formulation of the rule KFARb

n is shown, where the parameter n ≥ 1 indicates the length of an
internal cycle and the superscript b indicates that this variant of KFAR holds in case of branching
bisimulation.

Chapter 6. Abstraction 185

X1 = i1 ·X2 + Y1

X2 = i2 ·X3 + Y2

. . .

. . .
Xn−1 = in−1 ·Xn + Yn−1

Xn = in ·X1 + Yn,

I ∪ {τ} ⊇ {i1, i2, . . . , in} 6= {τ}

τ · τI(X1) = τ · (τI(Y1) + τI(Y2) + . . .+ τI(Yn−1) + τI(Yn))

Table 6.3: Fairness rules KFARb
n, n ≥ 1, I ⊆ A.

6.2.1 Branching bisimulation on process graphs
Different equivalence relations that abstract away internal steps have been defined, among which
branching and weak bisimulation are most popular. (Strong bisimulation does not treat internal ac-
tions differently than any other action.) Here we present so-called branching bisimulation introduced
in ([59]) because it is tightly related to the relation on probabilistic systems introduced later. (See
also [58] where the author discusses the reasons why branching bisimulation is preferable over weak
bisimulation.) When working with abstraction and branching bisimulation we prefer a process graph
model rather than the term model used in the previous chapters. In our opinion the definition and pre-
sentation particularly on terminating processes is technically more clear here than in the term model.
(See [53] for a term model of ACPτ .)

Definition 6.2.1. A process graph g is a triple (S,→, root) consisting of:
- a set of states S with a designated termination state NIL,
- root ∈ S,
- a relation→⊆ S × Aτ × S.

For technical reasons we do not distinguish between successful and unsuccessful termination as it
is common for ACP . We only have one termination state denoted NIL.

Definition 6.2.2. Let g and h be process graphs and R be a symmetric relation between states of g
and h. R is a branching bisimulation between g and h if:

1. the roots of g and h are related by R;

2. if s a→ s′ for a ∈ Aτ and (s, t) ∈ R then either:

2.1 a ≡ τ and (s′, t) ∈ R or

2.2 there exists a path t τ∗

=⇒ t1
a→ t′, such that (s, t1) ∈ R and (s′, t′) ∈ R;

Moreover, if

3. if root(g) a→ s′ for a ∈ Aτ , then there is t′ with root(h) a→ t′ and (s′, t′) ∈ R;

4. if root(h) a→ t′ for a ∈ Aτ , then there is s′ with root(g) a→ s′ and (t′, s′) ∈ R,

186 6.3. Probabilities and fairness

then R is called a rooted branching bisimulation between g and h. Constraints 3 and 4 are known as
the root condition.

g and h are (rooted) branching bisimilar, g ↔ bh (g ↔ rbh) if there exists a (rooted) branching
bisimulation R that relates root(g) and root(h).

The main characteristic of the branching bisimulation is stated in 2.2. It says that an action transi-
tion a→ in g can be mimicked by action transition a→ in h preceded by a sequence of τ transitions that
do not leave the current equivalence class. Axiom B2 in Table 6.1 expresses the same strategy. In the
case of weak bisimulation there is no constraint on intermediate states before and after performing
the observable action transition.

The purpose of the root condition and the rooted branching bisimulation is to achieve a congruence
relation and therefore compositional semantics, because branching bisimulation is not preserved by
the alternative composition operator. For the details about the axiomatization and construction of the
model of BPAτ and ACPτ see [27, 53, 13].

6.3 Probabilities, abstraction and fairness
In the previous section we argued that for verification of certain properties of concurrent systems the
fairness assumption about non-deterministic choice is essential. Otherwise many properties simply
cannot be established. In the presence of probabilities, a fairness assumption for probabilistic choice
is superfluous as it is implicitly expressed by assigning non-zero probabilities to every alternative in
the probabilistic choice. For comparison, the assumption that the internal action τ cannot be executed
infinitely many times if it is an alternative in a non-deterministic choice, in the probabilistic setting
corresponds to the fact that every infinite sequence of τ actions has probability 0 (in case of a process
with finitely many states).

Our aim now is to formulate algebraic rules (we will call them probabilistic verification rules) that
exactly capture the idea of “zero probability for infinite τ sequences”. The probabilistic verification
rules for fully probabilistic process algebra that will be presented here arise rather in a natural way
from the ones defined in standard process algebra (KFARs). These rules express the idea that due
to a non-zero probability for a system to execute an external action, abstraction from internal steps
will yield the external step(s) with probability 1 after finitely many repetitions. Moreover, they also
determine the probability distribution over the external activities that may occur after the internal
cycle (or a sequence of finitely many τ steps) is left.

We illustrate our ideas by the following motivating examples.

Example 6.3.1. An experimenter has one fair die D. He rolls it and if the outcome is one he rolls it
again. If the outcome is an even number he announces “head” and if the outcome is three or five he
announces “tail”. In both cases the experiment finishes. The experiment - process can be specified by
the following recursive specification:

D = one ·D t1/6(two t1/3four t1/3six) · sayhead t1/2(three t1/2five) · saytail

where sayhead and saytail are atomic actions expressing the observable events of announcing “head”
and “tail”, respectively. Note that the observer is not aware of the actions: one, two, three, four,
five and six, and so these actions are internal and will be renamed into τ . Clearly, the observer
(sitting outside the room) eventually will hear either “head” or “tail”, since the probability that the
outcome is one infinitely many times equals 0. In Figure 6.1a. we have drawn a transition system

Chapter 6. Abstraction 187

(informally presented) which corresponds to the specification of the experiment. Figure 6.1b. shows
the behaviour of the observer, where the ?1 and ?2 labels on the edges express the probabilities that
should be determined. �

c.b.a.

D

saytail

1 1

1/6

1/2 1/3

sD

three

1/6

sayhead

i

?2

i

sayhead saytail

?1

oD

1/6

one

five

1/6two

1/6

1/6

1/6
four

six

Figure 6.1: Experiment with one die - a. from the perspective of the experimenter; b. from the
perspective of the observer; c. the underlying Markov chain.

Example 6.3.2. In a different “black room” another experiment is performed. An experimenter has
two coins A and B. A is a fair coin with the probability distribution {1/2 head, 1/2 tail}, and B is
biased with distribution {1/3 head, 2/3 tail}. First he throws coin A. If head turns up the throwing
is over and he announces “head”. If tail shows up then he throws coin B. If tail turns up then the
throwing is over and he announces “tail”, but if head turns up then he takes coin A and performs the
experiment again. This experiment - process can be specified by the following recursive specification:

A = tailA ·B t1/2headA · sayhead
B = headB · A t1/3tailB · saytail

where sayhead and saytail are atomic actions expressing the observable events of announcing “head”
and “tail”, respectively. Again we set unobservable actions which are tailA, headA, tailB and headB .
The probability to have infinitely many times tail on the first coin followed by head on the second
coin equals 0 as well. Figure 6.2a. shows (informally) the behaviour of the experimenter and Figure
6.2b. shows the behaviour of the observer. �

1/3

b. c.a.

saytailsayhead

oA

1

1

1/2

1/3

2/3

1/2

sA

2/3

1/2

head

i

?2

head

saytail

1/2

tail

tail

A

i
sayhead

?1

Figure 6.2: Experiment with two coins - a. from the perspective of the experimenter; b. from the
perspective of the observer; c. the underlying Markov chain.

188 6.3. Probabilities and fairness

Clearly, in both experiments the probability to hear either “head” or “tail” equals 1. Our main
aim now is to find probabilities ?1 and ?2, and to establish a method that formally gives an answer
to the question: “With what probability the observer hears “head” (respectively “tail”)?”. In the
case of the first experiment, [29] gives the answer to this question as: the probability of “head” is
3/5(= 3×1/3

1−1/6
) and the probability of “tail” is 2/5(= 3×1/3

1−1/6
). This corresponds exactly to the absorption

probabilities for the discrete time Markov chain ([99]) given in Figure 6.1c. Using the syntax of our
process algebra, this relation of the two processes can be easily expressed by the following rule:
if X = a tπb tρi · X (where i is an internal action), then τ · τ{i}(X) = τ · (a tπ/(π+ρ)b). The
resemblance with the KFARb

1 rule (Table 6.3) is obvious.
The second example presents a situation in which the method proposed in [29] cannot abstract

away the internal cycle. But working with recursive equations in our process algebra we can introduce
a probabilistic rule which is a counterpart of KFARb

2. So, the rule has the following form:
X1 = i ·X2 tπY1

X2 = i ·X1 tρY2, I = {i}

τ · τI(X1) = τ · (τI(Y1) tατI(Y2))

(PV R2)

where X1 is the root variable and α = 1−π
1−πρ

. The values of probabilities α and β = 1− α = π(1−ρ)
1−πρ

are obtained as the absorption probabilities of the corresponding Markov chain when X1 is the root
variable, that is, X1 is the initial state of the system. We point out that the absorption probabilities for
this system differ for various initial distributions.

Back to the examples, we can easily calculate that in the both cases the probability for “head” is
3/5(=?1) and the probability for “tail” is 2/5(=?2), which are the absorption probabilities for Markov
chains in Figure 6.1c. and 6.2c. for the relevant states, of course taking into account that the second
experiment starts by flipping the coin A. To conclude, the processes in Figure 6.1a, 6.1b, 6.2a and
6.2b we consider equivalent after abstraction.

6.3.1 Process algebra - axiomatization
A formal definition of the axiomatization and a general form of the probabilistic verification rules
are given below. The underlying process algebra is fpBPA introduced in Section 3.2.1. We choose
to work with fully probabilistic process algebra. The presence of both choices (probabilistic and
non-deterministic) and abstraction at the same time leads to a set of complex algebraic equalities.
However, we figure out that it is still syntactically feasible, but unfortunately it is much more difficult
to find a model for the equialities; we worked out some rules that resolve certain forms of non-
deterministic choice in probabilistic systems, but the corresponding equivalence relation (for compo-
sitional semantics) is far from trivial. As a consequence, due to the absence of non-determinism the
interleaving parallel composition as treated in Chapter 4 cannot be incorporated in this axiomatiza-
tion. On the other hand, some version of synchronous parallel composition may be considered in such
a process algebra (see [17]).

The signature of fpBPA (Section 3.2.1) is extended by the new constant τ and the abstraction
operator τI for I ⊆ A. The new algebra will be denoted by fpBPAτ . The set of axioms of fpBPAτ

consists of the axioms of fpBPA in Table 3.1 and the axioms for the new operators given in Table 6.4.
Besides, we define a set of probabilistic verification rules PV Rn for n ≥ 1 as given below:

X1 = i ·X1 tπ1Y1, τ 6= i ∈ I

τ · τI(X1) = τ · τI(Y1)
(PV R1)

Chapter 6. Abstraction 189

x · τ = x T1

τI(τ) = τ T I0
τI(a) = a if a 6∈ I T I1
τI(a) = τ if a ∈ I T I2
τI(x · y) = τI(x) · τI(y) TI4
τI(x tπy) = τI(x) tπτI(y) PrTI

Table 6.4: Axioms for the abstraction operator (I ⊆ Aτ).

X1 = i1 ·X2 tπ1Y1

X2 = i2 ·X3 tπ2Y2

.

.
Xn−1 = in−1 ·Xn tπn−1Yn−1

Xn = in ·X1 tπnYn, I ∪ {τ} ⊇ {i1, i2, . . . , in} 6= {τ}

τ · τI(X1) = τ · (τI(Y1) tα1τI(Y2) tα2 . . . tαn−2τI(Yn−1) tαn−1τI(Yn))

(PV Rn)

where α1 = 1−π1

1−π1·π2·...·πn
, αj =

π1·...·πj−1·(1−πj)

1−π1·...·πn
for j : 1 < j ≤ n and πk ∈ 〈0, 1〉 for k : 1 ≤ k ≤ n. If

we refer to fpBPAτ extended with these rules we write fpBPAτ + PV R1 + PV R2 +
Special instantiations of PVR2 are obtained when Y1 or Y2 do not occur. Then
X1 = i1 ·X2

X2 = i2 ·X1 tπ2Y2

I ∪ {τ} ⊇ {i1, i2} 6= {τ}

τ · τI(X1) = τ · τI(Y2)

(PV R12)

and
X1 = i1 ·X2 tπ1Y1

X2 = i2 ·X1

I ∪ {τ} ⊇ {i1, i2} 6= {τ}

τ · τI(X1) = τ · τI(Y1)

(PV R22)

These rules will be applied in Section 7.2.

General probabilistic verification rule

Besides the fairness rulesKFARb
n in ACPτ (ACP with abstraction) a more general rule, called Cluster

Fair Abstraction Rule (CFAR(b)) [105, 27] that abstracts away sequences of internal actions has been
defined. It is based on the notion of a cluster, a set of processes that can reach each other through
sequences of τ transitions. In the probabilistic setting we can also be more general but only if we can
keep track of the probabilities with which processes in the cluster can reach each other.

Here informally we propose a rule that can abstract away τ actions(loops) in a more general
way than the rules introduced earlier. By a cluster we mean a set of states that can be reached one
from each other through τ sequences with a positive probability. The cluster in the presence of
probabilities can be expressed by a recursive specification. As a piece of additional notation, we
use 0 and 1 as valid parameters of the probabilistic choice operator, which was not the case till now.

190 6.3. Probabilities and fairness

Thus, if we write x t0y it means that x can occur with probability 0, while y is assigned probability
1. Note that we do not claim that the permission of t0 and t1 does not affect the axiomatization
of pBPA. Contrary, we will need additional axioms to relate added terms, for instance x t0y and y.
However, for our needs at this point we will think that in a given finite set of processes a process i is
assigned a zero probability in the equation of process j if j cannot make an internal transition to i
with a positive probability. For a fixed n ∈ IN the General Probabilistic Verification Rule GPV Rn is
defined as:

X1 = i11 ·X1 tπ11 i12 ·X2 tπ12 . . . i1n ·Xn tπ1nY1

X2 = i21 ·X1 tπ21 i22 ·X2 tπ22 . . . i2n ·Xn tπ2nY2

.

.
Xn−1 = in−11 ·X1 tπn−11 in−11 ·X2 tπn−12 . . . in−1n ·Xn tπn−1nYn−1

Xn = in1 ·X1 tπn1 in1 ·X2 tπn2 . . . inn ·Xn tπnnYn

I ∪ {τ} ⊇ {i11, i12, . . . , inn} 6= {τ}

τ · τI(X1) = τ · (τI(Y1) tα1τI(Y2) tα2 . . . tαn−2τI(Yn−1) tαn−1τI(Yn))

(GPVRn)

where,

− πij ∈ [0, 1] such that
n
∑

j=1

πij ≤ 1 for all i : 1 ≤ i ≤ n;

− αi for 1 ≤ i ≤ n is determined by the smallest solution of the system of linear equations:

ui = 1−
n
∑

k=1

πik +
n
∑

j=1

πij · uj

uj =
n
∑

k=1

πjk · uk for 1 ≤ j ≤ n, j 6= i

by taking αi = u1 if 1 −
n
∑

k=1

πik 6= 0, otherwise αi = 0. If Yj = Yi for some j : 1 ≤ j ≤ n, j 6= i,

then the equation corresponding to the variable uj should be replaced by the following equation:

uj = 1−
n
∑

k=1

πjk +
n
∑

k=1

πjk · uk for j 6= i and Yj = Yi

For this system of linear equations, the solution for ui gives the probability to get absorbed
in the state that corresponds to Yi when the initial state is the one corresponding to Xi. This

probability is obtain as the sum of two probabilities: the first summand 1 −
n
∑

k=1

πik gives the

probability to reach the state corresponding to Yi from the state of Xi in one step; the second
summand πij · uj gives the probability that the state Xj is reached from Xi in one step multiplied
by the probability to get absorbed in Yi if the initial state is the one corresponding to Yj. Yi = Yj

for some j : 1 ≤ j ≤ n, j 6= i means that the state corresponding to Yi can be reached from Xj

in one step. For that reason, the summand 1−
n
∑

k=1

πjk appears in the equation of uj in the case Yi = Yj.

Probabilities αi are obtained as absorption probabilities of the discrete time Markov chain gener-
ated by the recursive specification. αi gives the probability to get absorbed in the state corresponding
to Yi when the initial state corresponds to X1. The linear system of equations considered here can be

Chapter 6. Abstraction 191

found in [79, 85]. The condition 1 −
n
∑

k=1

π1k 6= 0 asserts that Yi is reachable from Xi with a positive

probability. Otherwise, the probability to reach Yi is 0. It is not difficult to check that PV Rb
n is an

instantiation of GPV Rb
n.

Recursion

The main goal in this chapter is to develop a strategy to eliminate (reduce) possibly infinite τ -
sequences. Inevitably, it brings back the need of introducing the concept of recursion and recursive
specification and the notions related to them. Related to this, many questions and problems arise by
introducing the τ constant and τI operator. For instance, in the literature treating this problem (see e.g.
[27, 13]) we can find examples showing that τ cannot be taken as a guard when one considers guarded
recursion. Moreover, allowing the τI operator in recursive specifications complicates and even makes
the formulation of guardedness for recursion impossible. Here we resort to the common approach: no
recursive specifications containing the τI operator is considered. The notion of guardedness, guarded
terms and guarded specification remain the same as in fpBPA. The formal definitions can be easily
obtained from the definitions given in Section 3.2.4 by adapting them for the syntax of fpBPA (+ and
Πn operators should be excluded). Thus, a guard can be only a constant from A, but not τ .

After we define the equivalence relation and construct the model of fpBPA with recursion, no
other properties of the model concerning projection and recursion (including recursive principles)
will be investigated. We believe that by following the strategy used in [27], where AIP− and RSP for
BPAτ have been proved, and the one used to prove the validity of RSP in pBPA in Section 3.3.2, we
can also prove RSP to be valid in fpBPAτ .

6.4 Model - fully probabilistic process graphs
The next question that will be discussed is to give a semantical meaning of the equalities in
fpBPAτ + PV R1 + PV R2 In other words, to define a model for the set of axioms. First of
all, the elements of the model domain should be defined and then an equivalence relation between
them (similar to the pattern for the term model described on page 46). As already mentioned,
we rather work with the process graph model than with the term model1. Thus, the elements
of the domain are probabilistic variant of process graph, that is, process graphs supplied with a
mechanism to capture probabilities. Every probabilistic process graph (also called probabilistic
labelled transition systems) has two types of states (nodes): probabilistic and action (they correspond
to static and dynamic process terms from the previous chapters) and two types of edges (transitions):
probabilistic and action transitions. An action transition may have the termination state, denoted
NIL as its incoming state. But NIL is not a process itself. To stay compatible with the nota-
tion used earlier, probabilistic edges will be presented by ; and action edges by a→. By allowing
at most one action transition to leave an action state we obtain a model of fully probabilistic processes.

Definition 6.4.1. Let A be a countable set of atomic actions. A fully probabilistic graph g is a tuple

1In a model based on term-deduction system we find it rather difficult to express terminating and related processes
in probabilistic setting if the constant for successful termination ε [27] is not included. In [53] the author introduces a
new process

√ ↓. Working with the alternating model for probabilistic systems we find it rather counterintuitive and
technically difficult to have such a process. Namely, it can neither be classified as a static nor as a dynamic process term.

192 6.4. Probabilistic process graphs

(Sp ∪ Sn ∪ {NIL},;,→, µ, root) consisting of:
− a countable set Sp of probabilistic states,
− a countable set Sn of action states such that Sp ∩ Sn = ∅ and NIL /∈ Sp ∪ Sn,
− root ∈ Sp,
− a relation ;⊆ Sp × Sn,
− a function→: Sn → (Sp ∪ {NIL})× Aτ , and
− a partial function µ : Sp × Sn 7→ 〈0, 1] such that µ(p, n) is defined iff (p, n) ∈; for (p, n) ∈

Sp × Sn and
∑

n∈Sn

µ(p, n) = 1 for any p ∈ Sp.

We denote S = Sp ∪ Sn. If S is a finite set then we say that the probabilistic graph g is finite.
NIL is called the termination state. If NIL is not reachable from the root of g then it can be ignored.
Function µ is called the probability distribution function of g.

If (p, n) ∈;, we write p ; n. If→ (n) = (p, a) we write n a→ p. For sake of simplicity, instead

of writing the value of function µ separately, if p ; n we write p
µ(p,n)
; n. By G we denote the set of

all finite fully probabilistic graphs.
If→ is not a function from Sn to (Sp∪{NIL})×Aτ , but a subset of Sn×(Sp∪{NIL})×Aτ , we

get the general class of probabilistic graphs for probabilistic processes that allow non-determinism,
also called labelled concurrent transition systems or labelled concurrent Markov chains. In this case,
action nodes are rather called non-deterministic states.

Obviously, for fully probabilistic process graphs it is not necessary to separate probabilistic from
action transitions, they can be merged into one transition with two labels. In any case, here we follow
the line of the alternating model for probabilistic systems from the previous chapters, but also we
leave room for a possible extension of the definitions given in the remainder of this section with
non-determinism.

The operators of fpBPAτ are interpreted on G as shown below (cf. Definition 6.4.5). One can
notice that the interpretation of the sequential composition and the abstraction operator are similar
to the interpretation of the same operator in BPA ([27]). In order to define the probabilistic choice
operator on the set of probabilistic process graphs we resort to the same method used for the alternative
composition for BPA which requires the notion of unwinding. If probabilistic choice is applied on
unwound probabilistic process graphs, the obtained result is misleading (see example 6.4.6).

Definition 6.4.2. Let g = (S ∪ {NIL},;,→, µ, root) be a fully probabilistic graph. We say that g
is root acyclic if there is no node n ∈ Sn and a ∈ Aτ such that n a→ root. Otherwise we say that g is
root cyclic.
We define the root unwinding map ρ : G→ G as follows:
• if g is root acyclic, then ρ(g) = g;
• if g is root cyclic, then ρ(g) = (S ∪ {NIL} ∪ {newroot},;′,→, µ′, newroot),

where
- newroot is a new node, newroot /∈ S and newroot is a probabilistic state,
- ;

′=; ∪{(newroot, n) : root ; n} and

- µ′(p, n) =

{

µ(p, n) if p ∈ S
µ(root, n) if p = newroot.

We can easily prove the following result.

Proposition 6.4.3. Let g be a fully probabilistic graph.

Chapter 6. Abstraction 193

i. Then ρ(g) is root acyclic.
ii. g↔ ρ(g), that is, g and ρ(g) are strongly bisimilar. �

Definition 6.4.4. (Interpretation of the constants) If a ∈ Aτ , its interpretation is
[a] = ({sp} ∪ {sn} ∪ {NIL}, {sp ; sn}, {sn

a→ NIL}, µ(sp, sn) = 1, sp).

Definition 6.4.5. (Interpretation of the operators)
Sequential composition Let g and h be graphs in G and
g = (Sg ∪ {NILg},;g,→g, µg, rootg) and h = (Sh ∪ {NILh},;h,→h, µh, rooth). g · h is defined
as:

(Sg ∪ Sh ∪ {NILh},;g ∪;h,→, µ, rootg),
where: → = (→g \{n a→ NILg : n ∈ Sg, a ∈ Actτ}) ∪ →h

∪ {n a→ rooth : n ∈ Sg, a ∈ Actτ , n a→ NILg},
and µ(p, n) =

{

µg(p, n) if p, n ∈ Sg

µh(p, n) if p, n ∈ Sh;

Probabilistic choice Let g and h be graphs in G and
ρ(g) = (Sg ∪ {NILg},;g,→g, µg, rootg) and ρ(h) = (Sh ∪ {NILh},;h,→h, µh, rooth).
g tπh, for π ∈ 〈0, 1〉, is defined as:

(S ∪ {NIL},;,→, µ, root),

where: S = (Sg \ {rootg}) ∪ (Sh \ {rooth}) ∪ {root}, root /∈ Sg ∪ Sh,
; = (;g \{rootg ; n : n ∈ Sg}) ∪ (;h \{rooth ; n : n ∈ Sh})
∪ {root ; n : n ∈ Sg, rootg ; n} ∪ {root ; n : n ∈ Sh, rooth ; n},

→ =→g ∪ →h with the remark that NILg and NILh are identified and this node is named
NIL,

and µ(p, n) =

µg(p, n) if p, n ∈ Sg \ {rootg}
µh(p, n) if p, n ∈ Sh \ {rooth}
π · µg(rootg, n) if p = root & n ∈ Sg & rootg ; n
(1− π) · µh(rooth, n) if p = root & n ∈ Sh & rooth ; n;

Abstraction Let g be a graph in G and g = (Sg ∪ {NILg},;g,→g, µg, rootg).
τI(g) for I ⊆ A is defined as:

(Sg ∪ {NILg},;g,→, µg, rootg),

where: p a→ n iff p a→g n and a 6∈ I and
p

τ→ n iff p a→g n and a ∈ I ∪ {τ}.

Example 6.4.6. If the unwinding of the original graph is omitted in the definition of the probabilistic
choice operator we obtain the situation shown in Figure 6.3c if g and h are as in Figure 6.3a and
Figure 6.3b, respectively. Figure 6.3c allows unwanted behaviour, since after choosing to perform a,
c can still be executed. Figure 6.3d. shows the probabilistic graph g tρh. �

6.4.1 Probability measure on graphs
Similarly to the non-probabilistic case (see Definition 6.2.2) we allow here an observable action a
(a 6= τ) to be simulated by a sequence of transitions such that exactly the last transition is an a-
transition and the rest are internal transitions within the same equivalence class. The new problem

194 6.4. Probabilistic process graphs

c

a) c)b)

ρ(1 − π)

b

π
1 − π

1 − π

r1

π

a
b

g h

ρπ

1

c

r2

a

a

r4

ρπ

b

1 − ρ

d)

c

r3

b

a

ρ(1 − π)

1 − ρ

g ρh

Figure 6.3: Probabilistic choice of g and h.

we should think about is the way we calculate the probability measure of such a sequence or a set of
sequences of transitions according to the probability distribution function µ. In the sequel, we sketch
(repeat) the standard concept used to define a probability measure (see [28, 29, 100]), adapted for the
alternating model of fully probabilistic graphs.

Let g = (Sp ∪ Sn ∪ {NIL},;,→, µ, root) be a finite fully probabilistic graph. If it is not
mentioned explicitly, we abbreviate Sp ∪ {NIL} by Sp.

Definition 6.4.7. For p ∈ Sp, n ∈ Sn, C ⊆ Sp, a ∈ Aτ and L ⊆ Aτ we define:

• n a→ C iff ∃q ∈ C : n
a→ q;

• P(p, a, C) =
∑

n:n
a
→C

µ(p, n), P(p, a, q) = P(p, a, {q}), P(p, a) = P(p, a, Sp) and P(p, L) =

∑

a∈L

P(p, a);

• An execution fragment or finite path is a nonempty finite alternating sequence

σ = p0 ; n0
a1→ p1 ; n1

a2→ p2 . . . pk−1 ; nk−1
ak→ pk

such that p0, . . . , pk ∈ Sp ∪ {NIL}, n0, . . . , nk−1 ∈ Sn, a1, . . . , ak ∈ Aτ . We say that σ starts in
p0 and we write first(σ) = p0, and also trace(σ) = a1a2 . . . ak and last(σ) = pk. |σ| denotes the
length of σ, |σ| = k. If last(σ) = NIL, then σ is maximal.

• If k = 0 we define P(σ) = 1. If k ≥ 1 we define
P(σ) = µ(p0, n0) · µ(p1, n2) · . . . · µ(pk−1, nk−1).

• σ(i) denotes the (i+ 1)-st probabilistic state of σ, σ(i) = pi, i = 0, 1, . . . , k;

• σ(i) denotes the i-th prefix of σ (counting only probabilistic states), that is, σ(i) = p0 ; n0
a1→ p1 ;

n1
a2→ p2 . . . pi−1 ; ni−1

ai→ pi for i = 0, 1, . . . , k; for i > k we put σ(i) = σ. If σ passes through
probabilistic state q, by σ(→q) we denote the prefix of σ which ends with the first occurrence of q in
σ. By σ(q→) we denote the subsequence of σ that starts at the first occurrence of q in σ.

Chapter 6. Abstraction 195

Definition 6.4.8. An execution or fullpath is either a maximal execution fragment or an infinite
sequence

π = p0 ; n0
a1→ p1 ; n1

a2→ p2 . . .
such that p0, p1, p2, . . . ∈ Sp, n0, n1, n2 . . . ∈ Sn, a1, a2, . . . ∈ Aτ . A path is a finite path or a fullpath.

• Pathful denotes the set of fullpaths in g;

• Pathful(p) denotes the set of fullpaths starting in p;

• Pathfin denotes the set of finite paths in g;

• Pathfin(p) denotes the set of finite paths starting in p;

• if Π is a set of fullpaths in g and p ∈ Sp, then
Π(p) = Π ∩ Pathful(p);

• if Σ is a set of finite paths in g and p ∈ Sp, then Σ(p) = Σ ∩ Pathfin(p);

• ≤prefix denotes the prefix relation on paths. Namely, if σ1 and σ2 are finite or infinite paths then
σ1 ≤prefix σ2 iff σ1 = σ2 or σ1 = σ

(k)
2 for some k;

• if σ1 is a finite path and σ2 is a finite or infinite path such that last(σ1) = first(σ2) then σ1 ◦ σ2 is
the path that arises by appending σ2 at the end of σ1 where the last state of σ1 and the first state of σ2

are identified;

• σ ↑ denotes the basic cylinder induced by σ, that is, σ ↑= {π ∈ Pathful(p) : σ ≤prefix π} where
p = first(σ);

• σ ↑fin= {σ′ ∈ Pathfin(p) : σ ≤prefix σ
′};

• σ ↓= {σ′ ∈ Pathfin(p) : σ′ ≤prefix σ};
• if Σ is a set of finite paths, Σ ↑= ⋃

σ∈Σ

σ ↑, Σ ↓= ⋃

σ∈Σ

σ ↓, Σ ↑fin=
⋃

σ∈Σ

σ ↑fin .

For each state p, P induces a probability space on Pathful(p) as follows. If SigmaField(p) is
the smallest sigma-field ([68]) on Pathful(p) which contains all basic cylinders σ ↑ where σ ranges
over all finite paths starting in p, then the probability measure Prob on SigmaField(p) is the unique
measure with Prob(σ ↑) = P(σ).

Lemma 6.4.9. ([28] Lemma 3.1.4) Let p ∈ Sp and Σ ⊆ Pathfin(p) such that σ, σ′ ∈ Σ, σ 6= σ′

implies σ 6≤prefix σ
′. Then, Prob(Σ ↑) =

∑

σ∈Σ

P(σ). �

Now we turn our attention to the problem of reaching a certain set S2 via a path going only
through states of a certain set S1. Let S1, S2 be subsets of Sp, Σ be the set of all finite paths σ such
that σ(i) ∈ S1 \ S2, for i = 0, 1, . . . , |σ| − 1 and last(σ) ∈ S2 and let Π = Σ ↑. Then our aim is to
compute the probabilities Prob(Π(p)). The following result expresses this probability by use of the
probabilities of the finite paths in Σ(p). Moreover, it induces a linear equation system whose solution
gives exactly the desired probabilities. Let us note that the definition of Σ guarantees that paths of
Σ(s) are pairwise disjoint.

Lemma 6.4.10. ([28]) Let g, S1, S2, Σ and Π be defined as above.

[Theorem 3.1.5] For all p ∈ Sp,
∑

σ∈Σ(p)

P(σ) = Prob(Π(p)).

196 6.4. Probabilistic process graphs

[Theorem 3.1.6] The function π : Sp → [0, 1], π(p) = Prob(Π(p)) is the least fixed point of the
operator F : (Sp → [0, 1])→ (Sp → [0, 1]) which is given by F (f)(p) = 1 if p ∈ S2, F (f)(p) = 0 if
p ∈ Sp \ (S1 ∪ S2), and F (f)(p) =

∑

t∈Sp

P(p, t) · f(t) if p ∈ S1 \ S2.

[Lemma 3.1.10] If T = {last(σ) : σ ∈ Pathfin(p), σ /∈ Σ↑fin}, then Σ(t) 6= ∅ for all states t ∈ T iff
Prob(Π(p)) = 1. �

Up to now we ignored traces of considered paths. From the definitions above and the construction
of a probability measure on a given probabilistic graph and probabilities over a set of paths it is easy
to include traces into the probability space. Informally, instead of measuring all finite paths starting
at p and that reach a certain set of states C, now only the paths from p to C with certain traces are
measured. Therefore, it is not surprising that similar results are obtained under these new conditions.
From now on, by ε we denote the empty word in A∗

τ , for Ω ⊆ A∗
τ Ω/ω = {ω′ : ωω′ ∈ Ω} where ωω′

denotes concatenation of words.

• Pathfin(p,Ω, C) is the set of all finite paths σ such that σ ∈ Pathfin(p), trace(p) ∈ Ω and
last(σ) ∈ C;

• Pathful(p,Ω, C) =
⋃

σ∈Pathfin(p,Ω,C)

σ ↑;

• Prob(p,Ω, C) = Prob(Pathful(p,Ω, C));

• For Q ⊆ Sp, Pathfin,Q(p,Ω, C) is the set of all finite paths σ ∈ Pathfin,Q(p,Ω, C) such that
σ(i) ∈ Q, for all 0 ≤ i ≤ |σ| − 1;

• Pathful,Q(p,Ω, C) is the set of all fullpaths σ such that there exists k ≥ 0 for which σ(k) ∈
Pathfin,Q(p,Ω, C);

• ProbQ(p,Ω, C) = Prob(Pathful,Q(p,Ω, C)).

Proposition 6.4.11. ([28] Proposition 3.3.4) Let g be a fully probabilistic graph and C ⊆ Sp. The
function from Sp × 2A∗ to [0, 1] defined by (p,Ω) 7→ Prob(p,Ω, C) is the least fixed point of the
operator F : (Sp × 2A∗ → [0, 1])→ (Sp × 2A∗ → [0, 1]) which is given by F (f)(p,Ω) = 1 if p ∈ C
and ε ∈ Ω, and if p /∈ C or ε /∈ Ω

F (f)(p,Ω) =
∑

(a,t)∈A×Sp

P(p, a, t) · f(t,Ω/a, C).

�

The following lemma which basically follows from the previous one expresses that under a certain
condition we can “look compositionally at” the probability measure. In other words, if all considered
paths from a certain state p to a set of states S pass through a state q (or in general case through a set
of states Q) then the total probability can be obtained by multiplication of the probability of reaching
q (Q) from p and the probability of reaching C from q (any state of Q). It will be used later when we
investigate sequential composition of two probabilistic graphs.

Chapter 6. Abstraction 197

Lemma 6.4.12. Let g be a fully probabilistic graph, p ∈ Sp, Q ⊆ Sp, C ⊆ Sp∪{NIL} and Ω1,Ω2 ⊆
A∗

τ . Furthermore, if σ is a finite path from p to C with a trace in Ω1Ω2 = {ω1ω2 : ω1 ∈ Ω1, ω2 ∈ Ω2},
then it passes through q for some q ∈ Q, and additionally trace(σ(→q)) ∈ Ω1 and trace(σ(q→)) ∈ Ω2.
Then

Prob(p,Ω1Ω2, C) = Prob(p,Ω1, Q) · Prob(q,Ω2, C).

Proof. For the sake of simplicity we assume that Q is a singleton, Q = {q}. The proof can easily be
expanded to the case of an arbitrary Q.

Let Σ(p) denotes the set of all finite paths from p to C that pass through q and have traces as
defined above. Furthermore, let Σk(p) denotes the subset of Σ(p) which contains those paths which
reach q (for the first time) in exactly k steps. Namely, if

σ = p ≡ p0 ; n0
a1→ p1 ; n1

a2→ . . . pk−1 ; nk−1
ak→ q ; m0

b1→ s1 ; . . . sl−1 ; ml−1
bl→ C,

and σ ∈ Σ(p) with pi 6= q for all i = 0, 1, . . . , k − 1, a1a2 . . . ak ∈ Ω1 and b1b2 . . . bl ∈ Ω2, then
σ ∈ Σk(p). Thus, Σ(p) =

⋃

k≥1

Σk(p) under assumption that p 6= q. It is clear that these sets are

pairwise disjoint and moreover, for all σ ∈ Σi(t), σ′ ∈ Σj(t), (i 6= j) σ 6≤prefix σ
′. Therefore, by

Lemma 6.4.9 Prob(Σ(p) ↑) =
∑

k≥1

Prob(Σk(p) ↑). Also, we note that if σ ∈ Σk(p) then σ(→q) is a

finite path from p to q with |σ(→q)| = k and trace(σ(→q)) ∈ Ω1 ∩ Ak
τ . We denote the set of such paths

by Σk(p, q).
Let us first consider the probability measure over paths in Σ1(p). According to Proposition 6.4.11
Prob(Σ1(p) ↑) =

∑

(l1,t1)∈Aτ×Sp

P(p, l1, t1) · Prob(t1,Ω/l1, C)

=
∑

l1∈Ω1,t1=q

P(p, l1, t1) · Prob(t1,Ω/l1, C) (for the other summands the value is 0)

=
∑

l1∈Ω1∩Aτ

P(p, l1, q) · Prob(q,Ω/l1, C) = Prob(p,Ω1, q) · Prob(q,Ω2, C).

To make it more clear let us consider the probability measure of Σ2(p) ↑.
Prob(Σ2(p) ↑) =

∑

(l1,t1)∈Aτ×Sp

P(p, l1, t1) · Prob(t1,Ω/l1, C)

=
∑

(l1,t1)∈Aτ×Sp

P(p, l1, t1) ·
∑

(l2,t2)∈Aτ×Sp

P(t1, l2, t2) · Prob(t2,Ω/l1l2, C)

=
∑

(l1,t1)∈Aτ×Sp

P(p, l1, t1) ·
∑

l1l2∈Ω1,t2=q

P(t1, l2, t2) · Prob(t2,Ω/l1l2, C)

(for the other summands the value is 0)
=

∑

(l1,t1)∈Aτ×Sp

P(p, l1, t1) ·
∑

l2:l1l2∈Ω1

P(t1, l2, q) · Prob(q,Ω/l1l2, C).

We claim that
∑

(l1,t1)∈Aτ×Sp

P(p, l1, t1) ·
∑

l2:l1l2∈Ω1

P(t1, l2, q) ·Prob(q,Ω/l1l2, C) = Prob(p,Ω1∩A2
τ , q) ·

Prob(q,Ω2, C), where by Prob(p,Ω1 ∩ A2
τ , q) = Prob(Σ2(p, q) ↑).

First, the conclusion Ω/l1l2 = Ω2 follows easily from the definition of Ω and
the fact that l1l2 ∈ Ω1. Next, from the definition of Σ2(p, q) it follows easily that
Prob(Σ2(p, q) ↑) = Prob(p,Ω1 ∩ A2

τ , q). Then,
Prob(p,Ω1 ∩ A2

τ , q) =
∑

(l1,t1)∈Aτ×Sp

P(p, l1, t1) ·
∑

(l2,t2)∈Aτ×Sp

P(t1, l2, t2) · Prob(t2,Ω1 ∩ A2
τ/l1l2, q)

=
∑

(l1,t1)∈Aτ×Sp

P(p, l1, t1) ·
∑

l2:l1l2∈Ω1∩A2
τ

P(t1, l2, q) · Prob(q,Ω1 ∩ A2
τ , q)

=
∑

(l1,t1)∈Aτ×Sp

P(p, l1, t1) ·
∑

l2:l1l2∈Ω1∩A2
τ

P(t1, l2, q)

198 6.5. Probabilistic branching bisimulation

since Prob(q,Ω1 ∩ A2
τ/l1l2, q) = 1 under assumption that Σ2(p, q) 6= ∅ and l1l2 ∈ Ω1, otherwise the

entire sum equals 0. Moreover, {l2 : l1l2 ∈ Ω1} = {l2 : l1l2 ∈ Ω1 ∩ A2
τ} since l2 is an action in Aτ .

In a similar way (extending the expression for k steps) for the probability measure of Σk(p) ↑ we
obtain:

Prob(Σk(p) ↑) = Prob(p,Ω1 ∩ Ak
τ , q) · Prob(q,Ω2, C), where Prob(p,Ω1 ∩ Ak

τ , q) =
Prob(Σk(p, q) ↑).

Finally, from the results for the probability measure Prob(p,Ω, C) on Σ(p) obtained above we
conclude:

Prob(Σ(p) ↑) =
∑

k≥1

Prob(Σk(p, q) ↑) =
∑

k≥1

Prob(p,Ω1 ∩ Ak
τ , q) · Prob(q,Ω2, C)

= Prob(q,Ω2, C) ·
(

∑

k≥1

Prob(p,Ω1 ∩ Ak
τ , q)

)

= Prob(q,Ω2, C) · Prob(p,Ω1, q).

�

6.5 Probabilistic branching bisimulation
The bisimulation on the set of fully probabilistic graphs we propose here is based on the notion of
a set of entries (a subset of the set of probabilistic nodes) and a set of exits (a subset of the set of
action nodes). If R is a given equivalence relation on a probabilistic graph g, an exit of a probabilistic
state p in g is an action state e reachable from p through and internal path (p τ∗

=⇒[p]R · ; e) that
is the outgoing state of an external action transition (e a→ q) or an internal transition that leads to a
new equivalence class (e τ→ q and (p, q) /∈ R). Every probabilistic state has a unique set of exits.
Having the sets of exits determined for each probabilistic node in the graph we can obtain the set of
entries. The procedure to get the set of entries of graph g is iterative. First, the root of the graph is an
entry. Further, an entry in one equivalence class is a node that is first entered from an exit of an entry
obtained in the previous iteration, say r, by taking either an external or an internal action. An external
action may lead to the same equivalence class of r, but an internal action has to lead to an equivalence
class different from [r]R. In this way, each entry determines the set of its succeeding entries. A
probabilistic node q is not an entry if it is reachable from entries belonging to the equivalence class
of q only through internal paths passing through this equivalence class. Finally, for each entry the
probabilities for reaching the equivalence classes of its succeeding entries are computed. All entries
with the same probability distribution are considered bisimilar. For non-entry nodes the probabilities
are not computed. Technically this involves the existence of an equivalence relation R̃ obtained from
R that relates only entries with the same probability measures. Formal definitions follow.

Definition 6.5.1. [Entry] If g is a fully probabilistic graph and if R is an equivalence relation on the
set of states then:
Entry0(g) = {root(g)},
Entryi+1(g) = {q : ∃r ∈ Entryi : ∃e ∈ ExitR(r) : e

a→ q, a ∈ Aτ & q /∈ [r]R}
∪ {q : ∃r ∈ Entryi : ∃e ∈ ExitR(r) : e

a→ q, a ∈ A & q ∈ [r]R},
where ExitR(r) = {s : r

τ∗

=⇒[r]R ·; s & ∃C 6= [r]R : s
a→ C, a ∈ Aτ}

∪ {s : r
τ∗

=⇒[r]R ·; s & s
a→ [r]R, a ∈ A}.

Finally, EntryR(g) =
⋃

i≥0

Entryi(g).

Chapter 6. Abstraction 199

By τ∗

=⇒ we denote the transitive and reflexive closure of ; · τ→ and by τ∗

=⇒Q we denote the
transitive and reflexive closure of {p ; · τ→ p′ : p, p′ ∈ Q} for Q ⊆ Sp ∪ {NIL}.

Definition 6.5.2. If g is a fully probabilistic graph, R and R̃ are equivalence relations on the set of
states such that R̃ ⊆ R and if r ∈ Sp, then:
NextEntry(r) = {q : ∃e ∈ ExitR(r) : e

a→ q, a ∈ Aτ & q /∈ [r]R}
∪ {q : ∃e ∈ ExitR(r) : e

a→ q, a ∈ A & q ∈ [r]R}
and NextEntryCR̃(r) = {[q]R̃ : q ∈ NextEntry(r)}.

Example 6.5.3. Let g and h be the graphs given in Figure 6.4. For the equivalence relationR induced
by the partition {{1, 2, 4, 6, 8, 9}, {3, 5, 7, 12, 15, 18}, {10, 13, 16}, {11, 14, 17}}, EntryR(g ∪ h) =
{1, 2, 3, 4, 5, 6, 7} and

r 1 3 2 4 5 6 7

ExitR(r) 10, 11 12 10, 11 13, 14 15 16, 17 18

NextEntryR(r) 3 2 3 5 6 7 6

For T defined by {{1, 2, 4, 6, 8, 9, 12, 15, 18}, {10, 13, 16}, {11, 14, 17}}, EntryT (g ∪ h) =
{1, 3, 4, 5, 7} and

r 1 3 4 5 7

ExitT (r) 10, 11 10, 11 13, 14 16, 17 16, 17

NextEntryT (r) 3 3 5 7 7

By Entry(g∪h) we mean Entry(g)∪Entry(h). The state shading given in Figure 6.4 corresponds
to the relation R. �

�������� ��������
21

3

8

9

10 11 12
13

5

4

���� ������������ ���� ���� 18
16 1713 14

15 6

7

α τ

τ β

1 − β
1 − α

a

b 1

τ

g :

τ1

a

α(1−β)
1−αβ a

1−α
1−αβ

1

h :

b

b

τ

β(1−α)
1−αβ

1−β
1−αβ

Figure 6.4: Probabilistic process graphs together with an equivalence relation on states.

Proposition 6.5.4. Let R be an equivalence relation on a fully probabilistic graph g and p be a
probabilistic node in g. There is a probabilistic node q such that (p, q) ∈ R, q ∈ EntryR(g) and
q

τ∗

=⇒[q]R p.

Proof. It is clear that the claim is true for all entries in g w.r.t. R. Having in mind that every node in
g is reachable from root(g) we define a distance from the root as:

200 6.5. Probabilistic branching bisimulation

if σ ≡ root(g) ; e1
a1→ p1 ; e2

a2→ . . . pn−1 ; en
an→ p is the shortest path from root(g) to p then

dist(p) = n. We put dist(root(g)) = 0.
The proof of the claim above is given by induction on dist(p). Let us assume that p is a proba-

bilistic node in g.
Basis If dist(p) = 0 then p ≡ root(g) and the claim is true.
Inductive step Let us assume that for all r such that dist(r) < n the statement is true and let

p be a node with dist(p) = n. Thus, root(g) ; e1
a1→ p1 ; e2

a2→ . . . pn−1 ; en
an→ p is the shortest

path from root(g) to p. From graph theory we conclude that ∀i < n : dist(pi) = i. Therefore, if
pn−1 ∈ [p]R and an = τ by the induction hypothesis there is a node r such that r ∈ [pn−1]R = [p]R,
r ∈ EntryR(g) and r τ∗

=⇒[r]R pn−1. Then r τ∗

=⇒[r]R p as well. In any other case an 6= τ and so, p is
an entry and the statement is true. �

Corollary 6.5.5. If R is defined as above, then for any R equivalence class C such that C ∩ (Sp ∪
{NIL}) 6= ∅, there is a c ∈ C, c ∈ EntryR(g). �

Due to the fact that two entries from the same equivalence class may have different sets of equiv-
alence classes of their next entries, these sets have to be parametrized by the entry they are associated
to (see Example 6.5.8).

Definition 6.5.6. (Probabilistic branching bisimulation) Let g and h be fully probabilistic graphs. If
R is an equivalence relation on Sg ∪ Sh ∪ {NILg, NILh} such that:

0. (root(g), root(h)) ∈ R;

1. if (p, q) ∈ R and p ; s then either

1.0 (s, q) ∈ R or

1.1 there are v, t such that (p, v), (s, t) ∈ R and
q

τ∗

=⇒ v ; t or q τ→ · τ∗

=⇒ v ; t;

2. if (p, q) ∈ R and p a→ s then either

2.0 a = τ and (s, q) ∈ R or

2.1 there are v, t such that (q, v), (s, t) ∈ R and

q
τ∗

=⇒ ·; v
a→ t or q(τ→ ·;)∗v

a→ t;

3. there is an equivalence relation R̃ on EntryR(g) ∪ EntryR(h) such that R̃ ⊆ R and

3.0. (root(g), root(h)) ∈ R̃;

3.1. if (p, q) ∈ R̃ then for any C ∈ NextEntryCR̃(p) ∪ NextEntryCR̃(q) and for any
a ∈ A,
Prob[p]R(p, τ ∗, C) = Prob[q]R(q, τ ∗, C) and
Prob[p]R(p, τ ∗a, C) = Prob[q]R(q, τ ∗a, C);

then (R, R̃) is a probabilistic branching bisimulation relation between g and h. We write g↔ pbh if
there is a probabilistic branching bisimulation (R, R̃) between g and h.

g and h are probabilistically rooted branching bisimilar, g ↔ prbh, if there is a probabilistic
branching bisimulation (R, R̃) between g and h such that

Chapter 6. Abstraction 201

4.1 if root(g) ; p then there is q in h such that root(h) ; q and (p, q) ∈ R;

4.2 if root(g) ; q then there is p in g such that root(g) ; p and (p, q) ∈ R;

5.1 if root(g) ; p
a→ s for a ∈ Aτ then there are q and t in h such that root(h) ; q

a→ t and
(p, q) ∈ R and (s, t) ∈ R;

5.2 if root(h) ; q
a→ t for a ∈ Aτ then there are p and s in g such that root(s) ; q

a→ s and
(p, q) ∈ R and (s, t) ∈ R.

The condition expressed by 4.1, 4.2, 5.1 and 5.2 is called probabilistic root branching conditions.

The requirements 0, 1 and 2 are counterparts for the requirements 1 and 2 in Definition 6.2.2. In
other words, if probabilistic transitions are treated as internal transitions then the conditions 0, 1 and 2
express that (first of all) two bisimilar probabilistic graphs have to match on their branching structure
in the sense of branching bisimulation.

From now on, instead of Prob[p]R(p, τ ∗, C) and Prob[p]R(p, τ ∗a, C) we will write ProbR(p, τ ∗, C)
and ProbR(p, τ ∗a, C), respectively. (From ProbR(p, τ ∗, C) it is clear that [p]R is the subscript
set in the original notation.) Even if [p]R̃ is not a NextEntry class for p, we take by default
Prob[p]R(p, τ ∗, [p]R̃) = 1. As usual we write â for a if a ∈ A and λ (the empty word) if a = τ .

Example 6.5.7. Let g and h be fully probabilistic graphs given in Figure 6.5. We consider the relation
R induced by the following partition: {{1, 2, 3, 4, 5}, {6, 8}, {7, 9}, {NIL}}.Then EntryR(g∪h) =

NIL

��������
21

4

5

6
7

NIL

���� 9

3

8

α τ

τ β

1 − β

ba

1 − α

g

α(1−β)
1−αβ

1−α
1−αβ

a b

h

Figure 6.5: Probabilistic branching bisimilar graphs.

{1, 3, NIL} and we take R̃ to be efined by the partition {{1, 3}, {NIL}}. Probabilities of these
entries to the R̃ equivalence classes are given in the following table. In the table we put − in the
(r, C) field if C 6∈ NextEntryCR̃(r). We omit the row of the NIL entry.

τ ∗ {1, 3} {NIL} τ ∗a {1, 3} {NIL} τ ∗b {1, 3} {NIL}
1 1 0 1 − 1−α

1−αβ
1 − α(1−β)

1−αβ

3 1 0 3 − 1−α
1−αβ

3 − α(1−β)
1−αβ

Hence, (R, R̃) is a probabilistic branching bisimulation between g and h. This example shows the
need to take all paths going through R but not through R̃ equivalence classes. Note that these graphs
are related to the processes in our motivating examples 6.3.1 and 6.3.2. �

Example 6.5.8. For the graphs g and h in Figure 6.6 there are two equivalence relations that satisfy
the condition 0, 1 and 2 in Definition 6.5.6: R1 induced by the partition {{1, 3}, {2, 4, 5, 6}, {NIL}}

202 6.5. Probabilistic branching bisimulation

and R2 induced by the partition {{1, 2, 3, 4, 5, 6}, {NIL}}. But only for R2 an equivalence relation
R̃2 that satisfies the third condition of the definition can be defined, namely, R̃2 can be defined by the
partition {{1, 3}, {NIL}}. Therefore, g ↔ pbh. But, g ↔/ prbh because R2 does not satisfy the root
condition in Definition 6.5.6, and no other bisimulation between g and h can be established. This
example actually shows that τ · a↔/ prba and so fpBPAτ 6` τ · a = a as is the case for BPAτ . �

NIL

�������������������� !"�"#�#1
4

5

4

2 NIL

$%3
6

1
g :

τ

1

a

1
h :

a

Figure 6.6: Probabilistic bisimilar but not root bisimilar graphs.

In order to conclude that graphs g and h from the previous example are not probabilistic rooted
branching bisimilar we investigated two equivalence relations R1 and R2 likely to give the desired
bisimulation. The following proposition states that it was enough to check only R1 because it has a
specific property: the roots of the graphs constitute an equivalence class.

Proposition 6.5.9. If g and h are root acyclic graphs that are probabilistic rooted branching bisim-
ilar, then there is a probabilistic rooted branching bisimulation (R, R̃) between g and h such that
{root(g), root(h)} forms an R equivalence class. �

Proposition 6.5.10. ↔ prb is an equivalence relation on G. �

From now on our main aim is to show that ↔ prb preserves the operators of fpBPAτ and on this
basis to construct the model of the algebra. For that purpose we will establish certain properties,
mainly concerning the probability measure, that will bring us close to the desired property of ↔ prb.
Our primary intention is to describe what happens with the equivalence classes, the set of entries
and the probability measure of a graph g with equivalence relation R on its set of states when it is
considered as a composition of few smaller graphs. It will turn out that all important issues can be
“decomposed” over the smaller graphs.

Let R be a equivalence relation on g that satisfies the conditions 0, 1 and 2 from Definition 6.5.6.

Proposition 6.5.11. If eNIL is an entry from [NIL]R then NextEntryR(eNIL) = ∅.

Proof. Follows directly from the definition of the set NextEntryR and the fact that NIL is a termi-
nation state. �

In the sequel by eNIL we will denote an entry from the [NIL]R equivalence class. We do so
because not always NIL is an entry, but according to Proposition 6.5.4 eNIL always exists. Entries
from [NIL]R play an important role when a sequential composition of two graphs is constructed.

Proposition 6.5.12. ∀p ∈ [NIL]R : ProbR(p, τ ∗, NIL) = 1.

Proof. If p ∈ [NIL]R then NIL can be reached from p only via paths with trace τ ∗. Moreover,
NIL is reachable from every state in [NIL]R. Take Σ(p) to be the set of all paths from p to NIL.
Then, Σ(p) ↑fin= Σ(p). Hence, the result follows from Lemma 6.4.10 (the third item) with T ⊆
[NIL]R \ {NIL} since no terminal state belongs to T from which Σ(t) 6= ∅ for t ∈ T . �

Chapter 6. Abstraction 203

Stated differently, if graph g is viewed as a discrete time Markov chain (if the labels are not taken
into account) the [NIL]R class forms a subset of the set of states of g such that once it entered it
cannot be left. Furthermore, NIL appears as the only absorbing state in this subset of states. (Also it
is the only absorbing state for the entire graph but possibly reached via traces different from τ ∗.)

Proposition 6.5.13. If x /∈ NextEntryR(p) and x /∈ [p]R then

ProbR(p, τ ∗a, C) = ProbR(p, τ ∗a, C ∪ {x}) = ProbR(p, τ ∗a, C \ {x})

Proof. From the definition of the probability measure on g we have that ProbR(p, τ ∗a, C) =
Prob(Σ1) and ProbR(p, τ ∗a, C ∪ {x}) = Prob(Σ2), where Σ1 = {σ ∈ Pathfin(p, τ ∗a, C) : σ =

p
τ∗

=⇒[p]R ·; ·
a→ C} and Σ2 = {σ ∈ Pathfin(p, τ ∗a, C ∪ {x}) : σ = p

τ∗

=⇒[p]R ·; ·
a→ C or σ =

p
τ∗

=⇒[p]R · ; ·
a→ x}. But if there exists a path σ ∈ Σ2 such that σ = p

τ∗

=⇒[p]R · ; ·
a→ x then we

obtain that x ∈ NextEntryR(p) which contradicts the assumption. Therefore, no such a path exists,
which implies that Σ1 = Σ2 and also ProbR(p, τ ∗a, C) = ProbR(p, τ ∗a, C ∪ {x}). �

Now we look at sequential composition of two graphs. Let Rg and Rs be equivalence relations on
fully probabilistic graphs g and s respectively, that satisfy the conditions 0, 1 and 2 from Definition
6.5.6. These relations induce an equivalence relation Rg·s on g · s defined by the following partition:

{C : C is an Rg equivalence class & C 6= [NILg]Rg}
∪ {C : C is an Rs equivalence class & C 6= [root(s)]Rs}
∪ {([NILg]Rg ∪ [root(s)]Rs) \ {NILg}}.

Of course this definition of Rg·s and in general the sequential composition of g and s makes sense
only if NILg is a state in g (reachable from root(g)). Otherwise, by definition g · s = g and no
further investigation needs to be done. So, from now on we assume that NILg is a state of g when
the sequential composition is considered.

Now we are interested in the relation between the set of entries of g · s and the set of entries of
g and s with respect to associated equivalence relations. We will show that the way Rg·s is chosen
does not disturb the set of entries of the original graphs except for the equivalence class which merges
[NIL]Rg and [root(s)]Rs . In that way, we can derive certain properties of g · s from some assumed
properties of g and s. We aim it to be used later in the proof of the congruence property of ↔ prb.
In particular, we would like to express the probability measure on g · s by means of the probability
measures on g and s because it will allow as to compare the reachability probabilities in g · s on the
basis of the reachability probabilities of g and s. We abbreviate Rg·s by R.

Lemma 6.5.14. R satisfies the requirements 0, 1 and 2 from Definition 6.5.6. �

Proposition 6.5.15. EntryR(g · s) =
(

EntryRg(g) ∪ EntryRs(s)
)

\ {NILg}
or EntryR(g · s) =

(

EntryRg(g) ∪ EntryRh
(s)
)

\ {NILg, root(s)}.

Proof. First, it is obvious that EntryRg(g) \ {NILg} ⊆ EntryR(g · s) and that NILg cannot be an
entry of g · s because it is not a state of this graph.

Second, if NILg ∈ EntryRg(g) then

∃r ∈ EntryRg(g) : ∃e ∈ ExitRg(r) :
(

(

e
a→ NILg & NILg 6∈ [r]R & a ∈ Aτ

)

or
(

e
a→ NILg & NILg ∈ [r]R & a ∈ A

)

)

.

204 6.5. Probabilistic branching bisimulation

The latter case is not possible (NIL cannot have entries), and so, by the definition of g · s and the
definition of R follows that r ∈ EntryR(g · s), e ∈ ExitR(r) and

(

e
a→ root(s) & root(s) 6∈

[r]R & a ∈ Aτ

)

. Therefore, root(s) ∈ EntryR(g · s) which implies EntryRs(s) ⊆ EntryR(g · s)
(see graphs in Figure 6.8 and Figure 6.7).

Third, if NILg 6∈ EntryRg(g) then there are two possibilities. If root(s) /∈ Entryi(s) for any
i > 0 then root(s) /∈ EntryR(g · s); otherwise we would be able to construct a path which makes
NILg an entry of g (graphs g2 · s1 and g2 · s3 in Figure 6.9). The second possibility is that root(s)
is reached by an entry of s in which case root(s) ∈ Entryi(s) for some i > 0. Then root(s) ∈
EntryR(g · s) even though NILg is not an entry of g (graph g2 · s2 in Figure 6.9 for g2 and s2 given
in Figure 6.7). �

a

g1

1

N

b

c

g3

π

1 − π

τ

e

N

a

b

1

e

τ

g2

1

a

1

N

τ

c

s1

root1

π

1 − π

s2

d

root2

x

1

1

v u

z

u

1

1 − π

1

τ

a

π

w

s3

root3

b×

NIL ∈ Entry(g1)

NIL, e ∈ Entry(g3)
[NIL]Rg = {NIL, e}

NIL /∈ Entry(g2), e ∈ Entry(g2)

[NIL]Rg = {NIL, e}

root1 /∈ Entryi+1(s1)

for all i ≥ 0

root2 ∈ Entryi+1(s2),

for some i ≥ 1

root3, u ∈ Entry(s3),

u ∈ NextEntryR(root3)
u /∈ Entry(s2),

Figure 6.7: Probabilistic graphs with their entries (partially).

Next, we go a step forward and consider probability measures on g · s. Our intention is to express
probability ProbR(p, τ ∗â, C) through probabilities in g and s which gives a compositional look at
the bisimulation we defined earlier. In general, C can be an arbitrary set of states of g · s. However,
according to the definition of probabilistic branching bisimulation we do not need to consider any set
of states but for the following result we restrict C to range only overR equivalence classes or a subset
of them such that it contains only entries of g. In such a way we avoid unnecessary complications
that arise by allowing an arbitrary C. Due to the definition of the probabilistic branching bisimulation

Chapter 6. Abstraction 205

π

z

c

a

1

b

1

root1

x

g1 · s1

c

root2 root3

π

a

1

a

1 − π

1

a

d

g1 · s3

w

1

g1 · s2

τ

u

1

v

b

τ

1 − π

1

u

×

Entry(g1) ∪ Entry(s1) \ {NIL}
Entry(g1 · s1) =

Entry(g1 · s2) =
Entry(g1) ∪ Entry(s2) \ {NIL}

Entry(g1 · s3) =
Entry(g1) ∪ Entry(s3) \ {NIL}

Figure 6.8: Sequential composition - part 1 (graph g1)

e

τ

g2 · s2

τ

1

a

b

τ

1 − π

1

u

a

π

w

root3

1

a

1

τ

g2 · s3

1

e

1

c

root1

x

a

1

1

g2 · s1

e

π

1 − π

1

v

b

z

d

root2

c

1 τ

u

×

Entry(g2 · s3) =

(Entry(g2) ∪ Entry(s3)) \ {root3}

Entry(g2 · s1) = Entry(g2 · s2) =

Entry(g2) ∪ Entry(s1) \ {root1} Entry(g2) ∪ Entry(s2)

Figure 6.9: Sequential composition - part 2 (graph g2).

206 6.5. Probabilistic branching bisimulation

1 − π

1 − π

g3 · s2

1

b

g3 · s3

τ

e

b

τ

a

π

1 − π

b

τ

1

1

c

root1

e

x

g3 · s1

1 − π

1

e

b

1 − π

z

v u

τ

π

τ

1

a

π

root3

w

a

1

c

root2

1

u

d

b

π

π

a

Entry(g3 · s1) =

×

Entry(g3) ∪ Entry(s2) \ {NIL}
Entry(g3 · s2) =

Entry(g3) ∪ Entry(s3) \ {NIL}
Entry(g3 · s3) =

Entry(g3) ∪ Entry(s1) \ {NIL}

Figure 6.10: Sequential composition - part 3 (graph g3).

this restriction on C will be done later anyway in the proof of the Congruence theorem where this
lemma is used. Namely, in the proof of the Congruence theoremC ranges over R̃g and R̃s equivalence
classes, where the existence of R̃g and R̃s is guaranteed by the assumption of the theorem according
to Definition 6.5.6. We claim that

Lemma 6.5.16. If p ∈ EntryR(g · s) and C is a subset of an R equivalence class such that C
contains only entries, then ProbR(p, τ ∗â, C) can be expressed by means of ProbRg(t, τ

∗â, D) and
ProbRs(u, τ

∗â, E) for D and E subsets of some equivalence classes of Rg and Rs and for some
t ∈ Sg and u ∈ Ss.

Proof. If C is (a subset of) an R equivalence class then C = D for D (a subset of) an Rg equivalence
class different from [eNIL]R̃g

, or C = E for E (a subset of) an Rs equivalence class different from
[root(s)]R̃s

, or C ⊆ B for B =
(

[NIL]Rg ∪ [root(s)]Rs

)

according to the definition of Rg·s. Recall
that p ∈ EntryR(g · s) if either p ∈ EntryRg(g) \ [NILg]Rg or p ∈ EntryRs(s) \ [root(s)]Rs or
p is an entry from [root(s)]R equivalence class. Clearly, if p is a state in s (g) and C is a subset of
the states of g (s) then the probability to reach C from p equals 0 and this case is not of our interest.
Depending on p and C we have the following non-trivial cases:

1. if p ∈ EntryRg(g) and C = D as given above, it follows directly that ProbR(p, τ ∗a, C) =
ProbRg(p, τ

∗a,D);

2. if p ∈ EntryRs(s) and C = E as given above, then ProbR(p, τ ∗a, C) = ProbRs(p, τ
∗a, E);

3. if p ∈ EntryRg(g) and C ⊆ B and p /∈ [NIL]Rg . We assume that [eNILg]Rg∩NextEntryRg (p) 6=
∅ for eNILg is an entry from [NILg]Rg ; otherwise C is not reachable from p and the probability
is 0. From the definition of g · s it is clear that NextEntryR(p) ⊆ Sg ∪ {root(s)} since
NextEntryRg(p) ⊆ Sg ∪ {NILg}. In other words, whether or not C contains states from Ss,
the relevant finite paths for the measure ProbR(p, τ ∗â, C) reaches C in states from Sg or in
root(s). Therefore,
ProbR(p, τ ∗â, C) = ProbR(p, τ ∗â, C ∩ (Sg ∪ {root(s)}))

Chapter 6. Abstraction 207

=

{

ProbRg(p, τ
∗â, C ∩ Sg), if root(s) /∈ C

ProbRg(p, τ
∗â, C ∩ (Sg ∪ {NILg})), if root(s) ∈ C

(For instance g3 · s3 in Figure 6.10 with p ≡ root(g3) and C = {e, root3, u}.)

4. if p ∈ [root(s)]R, C ⊆ B and B ∩ NextEntryR(p) 6= ∅: Then p ∈ [NILg]Rg or p ∈ [root(s)]Rs .
Clearly, B ∩ NextEntryR(p) ⊆ [root(s)]Rs , no state from [NIL]Rg can be an entry of p.
Therefore, ProbR(p, τ ∗â, C) = ProbR(p, τ ∗â, C ∩ [root(s)]Rs).

4.1 If p ∈ [NILg]Rg then by use of Lemma 6.4.12 we obtain:
ProbR(p, τ ∗â, C ∩ [root(s)]Rs)

= ProbR(p, τ ∗, root(s)) · ProbR(root(s), τ ∗â, C ∩ [root(s)]Rs)
= ProbRg(p, τ

∗, NILg) · ProbRs(root(s), τ
∗â, C ∩ [root(s)]Rs)

= ProbRs(root(s), τ
∗â, C ∩ [root(s)]Rs),

since ProbRg(p, τ
∗, NILg) = 1 by Proposition 6.5.12 (it is the case with graph g2 · s3 in

Figure 6.9 if p ≡ e);

4.2 If p ∈ [root(s)]Rs then the result is trivial because
ProbR(p, τ ∗a, C ∩ [root(s)]Rs) = ProbRs(p, τ

∗a, C ∩ [root(s)]Rs). (For instance g2 · s3

in Figure 6.9 or g3 · s3 in Figure 6.10 with p ≡ u and C = {e, root3, u}.)

5. if p ∈ [root(s)]R and C ⊆ E asE described above: we assume thatC∩NextEntryRs(root(s)) 6=
∅; otherwise ProbR(p, τ ∗a, C) = 0. In a similar way as in the previous case, there are two
posible situatioins: either p ∈ [NILg]Rg (p is a state of g) or p ∈ [root(s)]Rs (p is a state of s).

5.1 If p ∈ [NILg]Rg from the definition of g · s every finite path σ from p to C passes through
root(s) and like in 4.1 applying Lemma 6.4.12 and Proposition 6.5.12 we obtain:
ProbR(p, τ ∗a, C) = ProbR(p, τ ∗, root(s)) · ProbR(root(s), τ ∗a, C)

= ProbRg(p, τ
∗, NILg) · ProbRs(root(s), τ

∗a, C)
= ProbRs(root(s), τ

∗a, root(s)).
(For example g2 · s2 in Figure 6.9 if p ≡ e and C = {v}.)

5.2 If p ∈ [root(s)]Rs then it is straightforward that ProbR(p, τ ∗a, C) = ProbRs(p, τ
∗a, C).

(For example g3 · s2 in Figure 6.10 if p ≡ root2 and C = {v}.)
�

Next we will investigate transformations that arise when the abstraction operator τI is applied
on a probabilistic graph g on which an equivalence relation R is defined. Our goal is to keep R as
an equivalence relation on τI(g), check the way the set of entries transforms and find strong links
between the probability measure on g with respect to R and the one on τI(g) also with respect to R.
Thus, some properties of τI(g) can be easily derived from certain properties of g.

For that purpose, let us assume thatR is an equivalence relation on g which satisfies the conditions
0,1 and 2 from Definition 6.5.6. According to the definition of τI(g), R is an equivalence relation on
τI(g) as well (both graphs have the same set of states). Thus, R divides the sets of states of both
graphs into the same classes. But, due to the renaming of atomic actions from I into τ , many paths
in g containing observable action may become completely or partially internal in τI(g). Thus, inside
one equivalence class the possibility of taking an internal path in τI(g) before executing a certain
observable action (action from A \ I) are at least as in g. Then intuitively the probability of reaching
a certain state by executing an observable action in τI(g) is at least the probability in g.

For the set of entries we have the following expected result:

208 6.5. Probabilistic branching bisimulation

Proposition 6.5.17. EntryR(τI(g)) ⊆ EntryR(g).

Proof. An entry e of g may become a non-entry in τI(g) if and only if for every entry r of g for which
there exists a path r τ∗

=⇒[r]R · ; ·
a→ e it also holds that e ∈ [r]R and a ∈ I . In any other case there

is an entry r in g such that either r τ∗

=⇒[r]R · ; · a→ e and (r, e) /∈ R or r τ∗

=⇒[r]R · ; · a→ e and
(r, e) ∈ R and a ∈ A \ I , e remains an entry of τI(g). �

The next lemma answers the second part of our problem; it states that the probability of reaching
a set of states from one entry in τI(g) can be expressed as a function of probabilities with which the
same set of states is reached from the same entry in g. As we have already mentioned it may be the
case that the probability in τI(g) is a sum of more than one probability in g. But before we formulate
the claim, we need to make a few more assumptions. Let us assume that R̃ is an equivalence relation
on EntryR(g) such that R̃ ⊆ R and let R̃I = R̃ ∩ EntryR(τI(g)). It is obvious that R̃ is a “relaxed”
version on R̃ in Definition 6.5.6, but at this point we do not need to have it defined in more restrictive
manner. In order to distinguish the probability measure induced by R on g from the probability
measure induced also by R on τI(g), the second one will be put subscript RI instead of R.

Proposition 6.5.18. Let e be an entry in g and an entry in τI(g), C ′ an R̃ equivalence class in g and
C the R̃I equivalence class in τI(g) which is obtained from C, that is, C = C ′ ∩ EntryRI

(τI(g)).
Then, ProbR(e, τ ∗â, C) = ProbR(e, τ ∗â, C ′) where a ∈ A \ I or if a = τ then C 6⊆ [e]R.

Proof. First note that the both probabilities are measured on g but not on τI(g). We only need to
prove that the same states are reachable in C ′ and C.

Let us assume that c ∈ C ′ and that there is a path e τ∗

=⇒[e]R · ; · a→ c, that is, c is a next entry

of e in C ′ reachable by a action for a ∈ A \ I . Then, e τ∗

=⇒[e]RI
· ; · a→ c is a path in τI(g)

as well which implies that c is a next entry of e in τI(g) reachable by a action from e. Therefore,
c ∈ EntryRI

(τI(g)) and c ∈ C as well. From here we conclude that the set of finite paths over which
ProbR(e, τ ∗a, C) and ProbR(e, τ ∗a, C ′) are taken are the same which implies an equality between
these probabilities.

The case when a = τ can be proved in a similar way because by the assumption C ′, and therefore
C as well, are not subsets of [e]R. Then, doing an observable action a like above, or doing a τ step to
a different equivalence class in g does not make any difference in the course of the proof. �

Lemma 6.5.19. Let g, R, R̃ and R̃I be defined as above and let p be an entry of τI(g) and C an R̃I

equivalence class. Then
ProbRI

(p, τ ∗a, C) = ProbR(p, τ ∗a, C ′)+
∑

n≥1

∑

(E1,...,En)

∑

(b1,...,bn)∈In

∑

(t1,...,tn)

ProbR(p, τ ∗b1, t1)·

(
n−1
∏

i≥1

ProbR(ti, τ
∗bi+1, ti+1)) · ProbR(tn, τ

∗a, C ′), and

ProbRI
(p, τ ∗, C) = ProbR(p, τ ∗, C ′)+

∑

n≥1

∑

(E1,...,En)

∑

(b1,...,bn)∈In

∑

(t1,...,tn)

ProbR(p, τ ∗b1, t1)·

(
n−1
∏

i≥1

ProbR(ti, τ
∗bi+1, ti+1)) · ProbR(tn, τ

∗, C ′),

where:

Chapter 6. Abstraction 209

- the first sum is taken over all n-tuples of R̃ equivalence classes (E1 . . . , En) where Ei ⊆ [p]R,
1 ≤ i ≤ n

- the third sum is taken over all n−tuples (t1, . . . , tn) ∈ E1 × . . .× En and
- C ′ is the R̃ equivalence class which contains C.

Proof. We will prove only the first case with traces from τ ∗a for a ∈ A \ I . The second case can be
proved in a similar way.

Let Σ(p) be the set of all finite paths σ in g from p to C which pass only through [p]R before
reaching C and with a trace in τ ∗a1τ

∗a2 . . . τ
∗akτ

∗a for a1, a2 . . . , ak ∈ I and a ∈ A \ I ,

σ = p ≡ p0
τ∗

=⇒[p]R; n0
a1→ p1

τ∗

=⇒[p]R; n1
a2→ p2 . . . pk−1

τ∗

=⇒[p]R; nk−1
ak→ pk

τ∗a
=⇒[p]R C ∈ Σ(p),

with pi ∈ [p]RI
for all i = 0, 1, . . . , k − 1. According to the definition of τI(g),

τI(σ) = p ≡ p0
τ∗

=⇒[p]RI
p1

τ∗

=⇒[p]RI
p2 . . . pk−1

τ∗

=⇒[p]RI
pk

τ∗a
=⇒[p]RI

C = p
τ∗

=⇒[p]RI
pk

τ∗a
=⇒[p]RI

C

is a unique path in τI(g) from p to C going only through [p]RI
before reaching C with a trace in τ ∗a

which is induced by σ. Let denote the set of all paths in τI(g) that correspond to the paths in Σ(p) by
ΣI(p). Then it is clear that Σ(p) and ΣI(p) are equivalent sets (there is a bijection between them) and
for all pairs of corresponding paths, like σ and τI(σ) above, P(σ) = P(τI(σ)). And consequently,
ProbR(Σ ↑) = ProbRI

(ΣI ↑).
Now, for k ≥ 1 we define Σk(p) ⊆ Σ(p) to be the set of all paths in Σ with a trace in

Ωk =
⋃

(a1 ,a2,...,ak)∈Ik

τ ∗a1τ
∗a2 . . . τ

∗akτ
∗a. Then Σ(p) =

⋃

k≥0

Σk(p) and for any i, j, i 6= j, Σi(p) ∩

Σj(p) = ∅. Furthermore, Prob(Σ ↑) =
∑

k≥0

Prob(Σk) =
∑

k≥0

ProbR(p,Ωk, C). In the rest of the proof

we focus on transforming ProbR(p, τ ∗a1τ
∗a2 . . . τ

∗akτ
∗a, C) for fixed a1, . . . , ak. Let T = {t ∈

[p]R : p
τ∗

=⇒[p]R ·; ·
a1→ t}. Then applying Lemma 6.4.12 we obtain:

ProbR(p, τ ∗a1τ
∗a2 . . . τ

∗akτ
∗a, C) =

∑

t1∈T

ProbR(p, τ ∗a1, t1) · ProbR(t1, τ
∗a2 . . . τ

∗akτ
∗a, C)

=
∑

t1∈[p]R

ProbR(p, τ ∗a1, t1) · Prob(t1, τ ∗a2 . . . τ
∗akτ

∗a, C)

because all paths go through [p]R and for t1 /∈ T the probability is 0. Now, if ProbR(p, τ ∗a1, t1) > 0

then there is a path p τ∗

=⇒[p]R; n
a1→ t1 and since a1 6= τ and p is an entry in g follows that t1 is an

entry in g as well. Thus, the sum can be taken only over the entries in [p]R which exactly gives the
union of all R̃ classes E1, E2, . . . , El which are subsets of [p]R. Hence, the sum above can be split in
the following way:

∑

t1∈[p]R

ProbR(p, τ ∗a1, t1) · ProbR(t1, τ
∗a2 . . . τ

∗akτ
∗a, C)

=
l
∑

i≥1

∑

t1∈Ei

ProbR(p, τ ∗a1, t1) · ProbR(t1, τ
∗a2 . . . τ

∗akτ
∗a, C).

Next, we expand ProbR(t1, τ
∗a2 . . . τ

∗akτ
∗a, C) in a similar way and obtain:

ProbR(t1, τ
∗a2 . . . τ

∗akτ
∗a, C) =

l
∑

i≥1

∑

t2∈Ei

ProbR(t1, τ
∗a2, t2) · ProbR(t2, τ

∗a3 . . . τ
∗akτ

∗a, C).

After k steps and putting everything together and applying Proposition 6.5.18 in the last step we
have:
ProbR(p, τ ∗a1τ

∗a2 . . . τ
∗akτ

∗a, C)

210 6.5. Probabilistic branching bisimulation

=
l
∑

i1≥1

∑

t1∈Ei1

ProbR(p, τ ∗a1, t1) ·
l
∑

i2≥1

∑

t2∈Ei2

ProbR(t1, τ
∗a2, t2) ·ProbR(t2, τ

∗a3 . . . τ
∗akτ

∗a, C)

=
∑

(Ei1
,Ei2

)

∑

(t1,t2)∈Ei1
×Ei2

ProbR(p, τ ∗a1, t1) · ProbR(t1, τ
∗a2, t2) ·

ProbR(t2, τ
∗a3 . . . τ

∗akτ
∗a, C)

k
=

∑

(Ei1
,Ei2

,...,Eik
)

∑

(t1,t2,...,tk)

ProbR(p, τ ∗a1, t1) ·
(

k−1
∏

j≥1

ProbR(tj, τ
∗aj+1, tj)

)

· ProbR(tk, τ
∗a, C)

=
∑

(Ei1
,Ei2

,...,Eik
)

∑

(t1,t2,...,tk)

ProbR(p, τ ∗a1, t1) ·
(

k−1
∏

j≥1

ProbR(tj, τ
∗aj+1, tj)

)

·ProbR(tk, τ
∗a, C ′).

Finally, if we sum over all k ≥ 1, which basically means to sum over all Ωk, and we sum over
all elements in Ωk the second summand of the final result of the claim will be obtained. The first
summand ProbR(p, τ ∗a, C ′) adds the probability to reach C ′ from p in g only via τ ∗ paths (no action
from I occurs in these paths). Clearly, these are also path in τI(g) that should be taken into account
when ProbRI

(p, τ ∗a, C) is measured. �

Finally, we should obtain similar results for the third operator, tπ . Again, if g and s are given
probabilistic graphs, but additionally we require them to be root acyclic, and Rg, Rs are equivalence
relations on g and s respectively, we try to adjust/combine appropriately these relations into an equiv-
alence relation on g tπs such that a strong link between the issues of interest (set of entries, set of next
entries, probability measure) of g and s on one side and g tπs on the other side can be established.

For that purpose, let us assume that Rg and Rs are equivalence relations on g and s respectively,
which satisfy the conditions 0,1 and 2 from Definition 6.5.6. Moreover, [root(g)]Rg = {root(g)} and
[root(s)]Rs = {root(s)}. We define an equivalence relation R on g tπs in the following way:

{C : C is an Rg equivalence relation on g & C 6= [root(g)]Rg}
∪ {C : C is an Rs equivalence relation on s & C 6= [root(s)]Rs}
∪ {{root(g tπs)}}.

Shortly we write R instead of Rg tπs. From the definition of g tπs the following result is obtained
straightforwardly:

Proposition 6.5.20. EntryR(g tπs) =
(

EntryRg(g) ∪ EntryRs(s) ∪ {root(g tπs)}
)

\
{root(g), root(s)}. �

Lemma 6.5.21. R satisfies the requirements 0,1,2 from Definition 6.5.6. �

Lemma 6.5.22. If p ∈ EntryR(g tπs) and C is a subset of an R equivalence class which con-
tains only entries, then ProbR(p, τ ∗â, C) can be expressed by means of ProbRg(t, τ

∗â, D) and
ProbRs(u, τ

∗â, E) for D and E subsets of some equivalence classes of Rg and Rs and for some
t ∈ Sg and u ∈ Ss.

Proof. From Proposition 6.5.20 follows that either p is an entry in g, or p is an entry of s or
p ≡ root(g tπs). In the first case if C ⊆ Sg then ProbR(p, τ ∗â, C) = ProbRg(p, τ

∗â, C); oth-
erwise ProbR(p, τ ∗â, C) = 0. Similarly, in the second case if C ⊆ Ss then ProbR(p, τ ∗â, C) =
ProbRs(p, τ

∗â, C); otherwise ProbR(p, τ ∗â, C) = 0. Also, if p 6= root(r tπs) then
ProbR(p, τ ∗a, [root(r tπs)]R) = 0.

In the third case let C ⊆ Sg. From Proposition 6.4.11 we obtain
ProbR(root(g tπs), τ

∗â, C) =
∑

(l1,t1)∈Aτ×S

P(g tπs, l1, t1) · ProbR(t1, τ
∗â/l1, C).

Chapter 6. Abstraction 211

Since t1 6= root(g tπs), t1 ∈ Sg or t1 ∈ Ss. If t1 ∈ Ss, ProbR(t1, τ
∗â, C) = 0. If t1 ∈ Sg,

ProbR(t1, τ
∗â, C) = ProbRg(t1, τ

∗â, C). Moreover, by the definition of P, P(g tπs, l1, t1) = π ·
P(g, l1, t1) + (1− π) ·P(s, l1, t1) = π ·P(g, l1, t1), (because t1 /∈ Ss). For C ⊆ Ss we obtain similar
equations. Finally, if
C = [root(g tπs)]R, then ProbR(root(g tπs), τ

∗a, [root(g tπs)]R) = 0 for a ∈ A and
ProbR(root(g tπs), τ

∗, [root(g tπs)]R) = 1. �

Proposition 6.5.23. Let g be a fully probabilistic graph. Then g↔ prbρ(g).

Proof. We assume that g is a root cyclic graph, otherwise the result follows from Proposition 6.4.3.
Thus, we have that

g = (S ∪ {NIL}, Act,;,→, µ, root(g)) and
ρ(g) = (S ′ ∪ {NIL} ∪ {newroot}, Act,;′,→′, µ′, newroot)

as it states in Definition 6.4.2. Here by ′ we denote the isomorphism between S ∪ {NIL} and
S ′ ∪ {NIL}. We define an equivalence relation R on the nodes of g and ρ(g) by the following
partition:

{{root(g), root′(g), newroot}} ∪ {{x, x′} : x ∈ S, x′ ∈ S ′ and x 6= root(g)}.
It is easy to prove that R satisfies requirements 0, 1 and 2 from Definition 6.5.6. Then, we know from
the definition of ρ(g) that x is entry in g iff x′ is entry in ρ(g) for x 6= root(g). Thus we take R̃ to be
defined by one of the following partitions:

{{root(g), root′(g), newroot}} ∪ {{r, r′} : r ∈ S ∩ Entry(g) and r 6= root(g)} or
{{root(g), newroot}} ∪ {{r, r′} : r ∈ S ∩ Entry(g) and r 6= root(g)}.

The only critical point now is to prove that the probability measure of newroot in ρ(g) and the
one of root(g) in g are equal. The proof is based on a bijection between the paths in ρ(g) starting in
newroot and the paths in g starting in root(g) and hence over the whole path-prefixes contributing to
the two probability measures as it is shown in Figure 6.11.

&&' (()*
*+

rg

nr

r′g

ρ(g)

g

r′r

{rg , r′g , nr}, {r, r′} are R classes

Figure 6.11: Bisimulation between g and ρ(g).

�

Proposition 6.5.24. Let (R, R̃) be a probabilistic branching bisimulation between g and h. If p, q ∈
Sg ∪ Sh and (p, q) ∈ R̃, then NextEntryCR̃(p) = NextEntryCR̃(q).

212 6.5. Probabilistic branching bisimulation

Proof. Since (R, R̃) is a probabilistic branching bisimulation between g and h and (p, q) ∈ R for
some p, q ∈ Sg ∪ Sh then by the definition of the bisimulation we have:
∀C ∈ NextEntryCR̃(p) : ∀a ∈ A :

Prob[p]R(p, τ ∗, C) = Prob[q]R(q, τ ∗, C) and
Prob[p]R(p, τ ∗a, C) = Prob[q]R(q, τ ∗a, C). (1)

And ∀E ∈ NextEntryCR̃(q) : ∀a ∈ A :
Prob[p]R(p, τ ∗, E) = Prob[q]R(q, τ ∗, E) and
Prob[p]R(p, τ ∗a, E) = Prob[q]R(q, τ ∗a, E). (2)

Let us assume that C ∈ NextEntryCR̃(p) (3)
and C 6∈ NextEntryCR̃(q). (4)
From (4) we obtain: ∀c ∈ C : ∀e ∈ ExitR(q) :

¬
(

∃a ∈ Aτ : e
a→ c & c 6∈ [q]R

)

(5)

& ¬
(

∃a ∈ A : e
a→ c & c ∈ [q]R

)

(6)
From (3) we obtain:

∃s ∈ C : ∃e ∈ ExitR(p) : ∃a ∈ Aτ : e
a→ s & s 6∈ [p]R

or ∃s ∈ C : ∃e ∈ ExitR(p) : ∃a ∈ A : e
a→ s & s ∈ [p]R

from which:
∃s ∈ C : ∃e ∈ ExitR(p) : ∃a ∈ Aτ : p

τ∗

=⇒[p]R ·; e & e
a→ s & s 6∈ [p]R (3.1)

or ∃s ∈ C : ∃e ∈ ExitR(p) : ∃a ∈ A : p
τ∗

=⇒[p]R ·; e & e
a→ s & s ∈ [p]R (3.2)

If s 6∈ [p]R then from (3.1) we have:
∃σ ∈ Pathfin,[p]R(p, τ ∗a, C) : σ ≡ p

τ∗

=⇒[p]R; e
a→ s, for a ∈ Aτ , and P(σ) > 0 from which

Prob[p]R(p, τ ∗a, C) > 0. (7)

And from (5) follows that: ∀c ∈ C : ∀e ∈ ExitR(q) : ∀a ∈ Aτ : q
τ∗

=⇒[q]R ·; e ⇒ ¬(e
a→ c) that

is Pathfin,[q]R(q, τ ∗a, C) = ∅ and so, Prob[q]R(q, τ ∗a, C) = 0 which together with (7) contradicts
(1).

In a similar way we derive that (3.2) and (6) contradict (2). �

Corollary 6.5.25. Let (R, R̃) be a probabilistic branching bisimulation between g and h. If p ∈
EntryR(g) then there is a node q in h such that (p, q) ∈ R̃.

The following proposition expresses that all entries from [NIL]R form an R̃ equivalence class,
and consequently, they all have the same probability measure.

Proposition 6.5.26. Let g and h be a probabilistically branching bisimilar graphs. There is a prob-
abilistic branching bisimulation relation (R, R̃) such that if e, e′ ∈ EntryR(g ∪ h) ∩ [NIL]R, then
(e, e′) ∈ R̃.

From the definition ofNextEntryCR̃(p) and from Proposition 6.5.24 we can easily conclude that
if (p, q) ∈ R̃, then for any C ∈ NextEntryCR̃(p),

ProbR(p, τ ∗, C) = ProbR(q, τ ∗, C) ≥ 0 and ProbR(p, τ ∗a, C) = ProbR(q, τ ∗a, C) ≥ 0.
And for any R̃ equivalence class E which does not belong to NextEntryCR̃(p), and such that E 6⊆
[p]R (and so E 6⊆ [q]R),
ProbR(p, τ ∗, E) = ProbR(q, τ ∗, E) = 0 and ProbR(p, τ ∗a, E) = ProbR(q, τ ∗a, E) = 0, for any
a ∈ A.

Thus p and q can have different probabilities ProbR(p, τ ∗, E) and ProbR(q, τ ∗, E) only if E is
an R̃ equivalence class which is a subset of [p]R and E is reachable from p only with τ ∗ paths, hence

Chapter 6. Abstraction 213

E /∈ NextEntryCR̃(p). (See example 6.6.3 where probabilities with which 1 and 4 reach [2]R̃ are
different.)

We have obtained results necessary to prove the congruence property of ↔ prb with respect to ·, τI
and tπ operators. Actually, the proof can be easily derived from Lemma 6.5.16, 6.5.19 and 6.5.22.

Theorem 6.5.27 (Congruence theorem). ↔ prb is a congruence relation on G with respect to the
probabilistic choice operator, the sequential composition and the abstraction operator.

Proof.
Sequential composition. Let g↔ prbh and s↔ prbt, and let (R1, R̃1) and (R2, R̃2) be probabilistic

root branching bisimulations between g and h, and s and t respectively. We define relationR between
g · s and h · t on the basis of R1 and R2 in the same way it was done on page 203 where Rg·s was
defined from Rg and Rs.

Furthermore, we define an equivalence relation R̃ onEntryR(g·s∪h·t) by the following partition:

{C : C is an R̃1 equivalence class & C 6= [eNILg]R̃1
}

∪ {C : C is an R̃2 equivalence class & C 6= [root(s)]R̃2
}

∪ {([eNIL]R̃1
∪ [root(s)]R̃2

) ∩ EntryR(g · s ∪ h · t)}.

We repeat once again that [eNILg]R̃1
contains all entries from [NILg]R1 = [NILh]R1 and [root(s)]R̃2

contains root(t).
That R satisfies the requirement 0,1 and 2 of Definition 6.5.6 follows easily from Lemma 6.5.14.

Also it is clear that R satisfies the root condition because R1 satisfies it by the assumption. We still
need to prove the fourth requirement of the definition. From the assumption we know that

- if (p, q) ∈ R̃1 and if D is an R̃1 equivalence class such that D ∈ NextEntryCR̃1
(p), then

ProbR1(p, τ
∗â, D) = ProbR1(q, τ

∗â, D);

- if (p, q) ∈ R̃2 and if E is an R̃2 equivalence class such that E ∈ NextEntryCR̃2
(p), then

ProbR2(p, τ
∗â, E) = ProbR2(q, τ

∗â, E).

Then, the result follows easily from Lemma 6.5.16 by which ProbR(p, τ ∗â, C) and ProbR(q, τ ∗â, C)
can be expressed by means of ProbR1(p, τ ∗ â, D) and/or ProbR2(p, τ ∗ â, E)

Abstraction operator. Let g ↔ prbh and let (R, R̃) be probabilistic root branching bisimulations
between g and h. We consider relations (RI , R̃I) where RI = R and R̃I = R̃ ∩ EntryR(τI(g))
(the same way we did it on page 208). Clearly, we have to check only the fourth requirement from
Definition 6.5.6. From the assumption we know that if (p, q) ∈ R̃ and if C ′ is an R̃ equivalence class
such that C ′ ∈ NextEntryCR̃(p), then ProbR(p, τ ∗a, C ′) = ProbR(q, τ ∗a, C ′). (AS)
Let us assume that (p, q) ∈ R̃I and C ∈ NextEntryCR̃I

(p). Then, C ⊆ C ′ for a certain C ∈
NextEntryCR̃(p). From Lemma 6.5.19 we have:
ProbRI

(p, τ ∗â, C) = ProbR(p, τ ∗a, C ′)+
∑

n≥1

∑

(E1,...,En)

∑

(b1,...,bn)∈In

∑

(t1,...,tn)

ProbR(p, τ ∗b1, t1)·

(
n−1
∏

i≥1

ProbR(ti, τ
∗bi+1, ti+1)) · ProbR(tn, τ

∗â, C ′), where:

- the first sum is taken over all n-tuples of R̃ equivalence classes (E1 . . . , En) all of them subsets
of [p]R,

214 6.5. Probabilistic branching bisimulation

- the third sum is taken over all n−tuples (t1, . . . , tn) ∈ E1 × . . .× En.
Because a is an observable action or a = τ and a-transition enters a new R class,
ProbR(tn, τ

∗a, C ′) > 0 iff C ′ ∈ NextEntryCR̃(tn). Then, ProbR(t, τ ∗a, C ′) > 0 for all
t ∈ En = [tn]R̃ and from the assumption that (R, R̃) is a probabilistic branching bisimulation this
probability is a constant for any t ∈ En which we will denote by ProbR(En, τ

∗a, C ′). Similarly,
∑

ti+1

ProbR(ti, τ
∗bi+1, ti+1) = ProbR(ti, τ

∗bi+1, Ei+1) and this is a constant for all t ∈ Ei which we

denote by ProbR(Ei, τ
∗bi+1, Ei+1). Thus we can transform the expression above into:

ProbRI
(p, τ ∗â, C) = ProbR(p, τ ∗a, C ′)+

∑

n≥1

∑

(E1,...,En)

∑

(b1,...,bn)

ProbR(p, τ ∗b1, E1)·

(
n−1
∏

i≥1

ProbR(Ei, τ
∗bi+1, Ei+1)) · ProbR(En, τ

∗a, C ′).

The same expression we obtain for ProbRI
(q, τ ∗â, C) and then the result follows from the

assumption (AS).

Probabilistic choice. Let g ↔ prbh and s ↔ prbt g, h, s and t and let (R1, R̃1) and (R2, R̃2) be
probabilistic root branching bisimulations between ρ(g) and ρ(h), and ρ(s) and ρ(t) respectively such
that {root(ρ(g)), root(ρ(h))} and {root(ρ(s)), root(ρ(t))} form an equivalence class of the relevant
relation. We define relation R between ρ(g) tπρ(s) and ρ(h) tπρ(t) on the basis of R1 and R2 in the
same way it was done on page 210 where Rg tπs was defined from Rg and Rs.

Furthermore, we define an equivalence relation R̃ on EntryR(ρ(g) tπρ(s)∪ ρ(h) tπρ(t)) by the
following partition:

{C : C is an R̃1 equivalence class & C 6= [root(ρ(g))]R̃1
}

∪ {C : C is an R̃2 equivalence class & C 6= [root(ρ(s))]R̃2
}

∪ {{root(ρ(g) tπρ(s)), root(ρ(h) tπρ(t))}}.

Thus, the roots of all four graphs are not included, but the new roots are related by R̃. (Do
not forget that [root(ρ(g))]R̃1

= [root(ρ(h))]R̃1
= {root(ρ(g)), root(ρ(h))} and [root(ρ(s))]R̃2

=
[root(ρ(t))]R̃2

= {root(ρ(s)), root(ρ(t))}.)
That R satisfies the requirement 0,1 and 2 of Definition 6.5.6 follows easily from Lemma 6.5.21.

Also R satisfies the root condition because R1 and R2 satisfy it by the assumption. We still need to
prove the fourth requirement of the definition. From the assumption we know that

if (p, q) ∈ R̃1 and if D is an R̃1 equivalence class such that D ∈ NextEntryCR̃1
(p), then

ProbR1(p, τ
∗a,D) = ProbR1(q, τ

∗a,D);
if (p, q) ∈ R̃2 and if E is an R̃2 equivalence class such that E ∈ NextEntryCR̃2

(p), then
ProbR2(p, τ

∗a, E) = ProbR2(q, τ
∗a, E).

Then, the result follows easily from Lemma 6.5.22. Thus, we proved that
ρ(g) tπρ(s)↔ prbρ(h) tπρ(t) and therefore, g tπs↔ prbh tπt according to Definition 6.4.5. �

After we showed that ↔ prb is congruence we can define the model of fpBPAτ as stated in the
following theorem.

Theorem 6.5.28 (Soundness theorem). G/↔ prb is a model of fpBPAτ +PVR1+PVR2+. . . .

Proof. To prove the result is very easy. For the axioms of fpBPA the result follows straightforward
from Proposition 6.4.3 ii. and Theorem 3.3.37 on page 66.

Chapter 6. Abstraction 215

Soundness of the axioms TI0-TI2 in Table 6.4 is straightforward. For axioms TI4 and PrTI
from Definition 6.4.5 follows easily that (4S,4S) is the desired probabilistic root branching bisim-
ulation which relates the left-hand side and the right-hand side of the axiom. Here, 4S denotes the
identity (diagonal) relation on the set of states of the considered graph. Clearly, if R = 4S , then
R̃ = 4S as well.

For soundness of axiom T1 we need to find a probabilistic root branching between graphs g and
g · τ which have the form as given in Figure 6.12. Obviously, relation R defined by the partition

{{r, r′}, {NILg, rτ , 1, NILg·τ} | r ∈ Sg and r′ is the corresponding state of r in Sg·τ}
satisfies the conditions 0, 1 and 2 from Definition 6.5.6 as well as the root condition. Take R̃ to be the
relation defined by the partition

{{r, r′}, {NILg, rτ , NILg·τ} | r ∈ Sg and r′ is the corresponding state of r in Sg·τ}.
To check condition 3 for R̃ is trivial.

,-.�..�./ 0�00�01

2�23�3

rg

τ

rτ

r

g

NILg

r

g · τ

1

NILg·τ

1

rg·τ

{NILg , rτ , NILg·τ , 1}, {r, r′} are R classes

Figure 6.12: Probabilistic graph of g · τ for a given g.

Finally, we need to prove soundness of the verification rules PVR1, PVR2,. . . . But, our guiding
idea has been to construct such an equivalence relation that relates the processes in the motivating
example which are instances of the verification rules (the graphs in Figure 6.5 correspond to PV R2).
Therefore, we explain once again the way a probabilistic root branching bisimulation can be con-
structed for PVR3 and for any other rule the construction will be similar.

Let g1, g2, g3, h1, h2 and h3 be fully probabilistic graphs and

g1↔ prbi · g2 tπ1h1, g2↔ prbi · g3 tπ2h2, g3↔ prbi · g1 tπ3h3,

for i ∈ I and π1, π2, π3 ∈ 〈0, 1〉. According to the Congruence theorem 6.5.27 g1 is probabilistically
bisimilar to the graph shown in Figure 6.13. Again from the Congruence theorem follows that the
graphs τ · τI(g1) and τ · τI(G) in Figure 6.14 are probabilistically root branching bisimilar. Thus, we
need to construct a probabilistic root branching bisimulation between τ · τI(G) and τ ·H in the same
figure which will conclude the proof. Take R to be the relation defined by the partition

{{0, 0′}, {1, 1′}, {2, 2′, 3, 4, 5, 6, 7}} ∪ {{s} : s ∈ Shi
, s 6= root(h), i = 1, 2, 3 }

216 6.6. Probabilistic branching bisimulation

and R̃ the relation defined by the partition

{{0, 0′}, {2, 2′}} ∪ {{s} : s ∈ Shi
, s is a probabilistic state, s 6= root(h), i = 1, 2, 3 }.

Note that the construction of the probabilistic choice of two graphs guarantees that 2, 3 and 4 are
not incoming states for any transitions except for 1

τ→ 2, 5
τ→ 3 and 6

τ→ 4, respectively. It means
that these states cannot become entries. Now it is easy to check that (R, R̃) is a probabilistic root
branching bisimulation.

4�4�4�44�4�4�44�4�4�4
5�5�5�55�5�5�55�5�5�5

6�6�66�6�66�6�6
7�7�77�7�77�7�7

8�8�8�88�8�8�88�8�8�8
9�9�99�9�99�9�9
7

1 − π2

i

π1
i

1 − π3

1 − π1

π2

h3

i

π3

5

2

3 4

6

h1

h2

g1 ↔ pb

Figure 6.13: Probabilistically root bisimilar graph to g1.

:�:�:�::�:�:�::�:�:�:
;�;�;�;;�;�;�;;�;�;�;

<�<�<�<<�<�<�<<�<�<�<
=�=�==�=�==�=�=

>�>�>>�>�>>�>�>
?�?�??�?�??�?�? @�@�@@�@�@@�@�@@�@�@

A�A�AA�A�AA�A�AA�A�A
B�B�B�BB�B�B�BB�B�B�B
C�C�CC�C�CC�C�C D�D�DD�D�DD�D�D

E�E�EE�E�EE�E�E
6

τI (g1)

τ · τI(g)

τ

1

7

π3

h3h2

h3

5

4

1 − π2 π2 1 − π3

1 − π1

τ

τ

τ

τ

3

0

2
π1

τ · τI(G)

1

1

h1

2′

0′

1

π1π2(1−π3)
1−π1π2π3

τ

1′

τ · H

1−π1
1−π1π2π3

π1(1−π2)
1−π1π2π3

h1

h2

↔ prb ↔ prb

Figure 6.14: Probabilistically root bisimilar graph to τ · τI(g1).

�

6.6 Deciding probabilistic branching bisimulation
In this section, we present an algorithm that computes a probabilistic branching bisimulation equiv-
alence relation for given fully probabilistic graphs. The algorithm decides whether the root nodes of

Chapter 6. Abstraction 217

the graphs have the same branching structure and, further, if they have the same probability measures.
At the end it returns a pair of relations that relates these graphs if such relations exist.

The basic idea of the algorithm is to start with the coarsest branching bisimulation relation that
relates two nodes if and only if they have the same branching structure, regardless of their probability
measures. In Definition 6.5.6 one can notice that probabilistic transitions in the part which concerns
the branching structure (items 0, 1 and 2) can be viewed as internal transitions. This gives us liberty to
employ any algorithm that decides branching bisimulation on non-probabilistic systems. In particular,
here we use the algorithm for deciding branching bisimulation equivalence in [64]. The original
algorithm is defined on one graph in which case the output is the coarsest branching bisimulation on
that graph. The algorithm can slightly be modified into an algorithm that works on a union of two
graphs (which is what we need). In this case (Step1) the output is either the branching bisimulation
equivalence relation R between the two graphs with roots root1 and root2, and it is the input of the
second part of our algorithm; or it has found that the two graphs are not branching bisimilar (the root
nodes are not R-related) and it returns the empty relation meaning that two graphs are not branching
bisimilar. In the latter case the given graphs are not probabilistically branching bisimilar as well
(Step2). Before the second part is run, the set of entries w.r.t. R is calculated (Step3).

The second part of the algorithm is concerned with probabilities. Starting from the R equivalence
classes restricted on the entries as the initial value for R̃ (Step4, where BB is the partition induced
by R), the algorithm refines the R̃ equivalence classes by comparing the probability measures for
the nodes belonging to the same class (Step5). If it has been established that two or more nodes
from the same equivalence class have different probabilities, then it is split into separate subclasses.
Finally, if it has been detected that the roots have been split then the algorithm terminates (Step6)
with the conclusion that the two graphs are not probabilistically bisimilar (returning the pair (∅, ∅)).
Otherwise, the algorithm returns the pair of relations that makes graphs g and h probabilistically
branching bisimilar (Step7). The crucial point here is the definition of a splitter. (Note: many
algorithms concerning bisimulation are based on the notion of a splitter defined in an appropriate way
for that particular relation.)

Definition 6.6.1. Let g be a fully probabilistic graph and R an equivalence relation on g. Let R̃ be
an equivalence relation that is a subset of R and let Π be the partition induced by R̃. A pair (a, C) for
a ∈ Aτ and C ∈ Π is a splitter of Π if for some E ∈ Π and p, p′ ∈ E, if C ∈ NextEntryCΠ(p) or
C ∈ NextEntryCΠ(p′) then

ProbR(p, τ ∗a, C) 6= ProbR(p′, τ ∗a, C).

Thus a splitter (a, C) of a partition Π indicates a class in Π that contains states which prevent
(R,Π) from being a probabilistic branching bisimulation. Moreover, it indicates that partition Π has
to be refined to Π′ in such a way that (a, C) is not a splitter of Π′. And thus, we split the set of entries
in finer classes, subsets of corresponding R classes, until we obtain a partition (the R̃ relation) that
meets the third requirement in Definition 6.5.6. Formally,

Definition 6.6.2. Let g, R and Π be defined like in the previous definition and let (a, C) be a splitter
of Π. If E ∈ Π we define a refinement of E w.r.t. (a, C), Refine(E, a, C), in the following way:

Refine(E, a, C) = {En : n ∈ N},
for some set of indices N such that

1. {En : n ∈ N} is a partition of E and

218 6.6. Probabilistic branching bisimulation

2. ∀n ∈ N : ∀s, t ∈ En : ProbR(s, τ ∗a, C) = ProbR(t, τ ∗a, C).
The refinement of Π w.r.t. splitter (a, C) is:

Refine(Π, a, C) =
⋃

E∈Π

Refine(E, a, C).

The probabilities ProbR(p, τ ∗a, C) can be computed by solving the linear equation system (see
e.g. [28, 29])

xp = 1 if a = τ and p ∈ C
xp = 0 if Pathfin,[p]R(p, τ ∗a, C) = ∅
xp =

∑

t∈[p]R

P(p, τ, t) · xt + P(p, a, C) otherwise

Example 6.6.3. The splitter idea applied to the graphs g and h in Figure 6.4 works in the following
way. Take R̃0 to be induced by the partition {{1, 2, 4, 6}, {3, 5, 7}} (which is the initial value of Π
(and therefore of R̃) in the algorithm. By solving the linear equation system we get that (a, {3, 5, 7})
is a splitter of Π because ProbR(1, τ ∗a, {3, 5, 7}) 6= ProbR(2, τ ∗a, {3, 5, 7}). As a result of the next
step of refining Π the value of Π is: {{1, 4}, {2, 6}, {3, 5, 7}}. Again a system of linear equations is
solved and since there are no splitters of Π the refining procedure finishes. By this we have found
that (R,Π) defines a probabilistic branching bisimulation between g and h, where R is defined in
Example 6.5.3. �

The algorithm is given step-by-step in Figure 6.15. The input is given as a union of two graphs g
and h with roots: root1 and root2, respectively.

Input : finite fully probabilistic graphs g and h with (S,;,→, µ, root1, root2)
Output : (R,Π) probabilistic branching bisimulation between g and h if it exists

(∅, ∅) if g and h are not probabilistically branching bisimilar

Method :
Step1 : Call the coarsest branching bisimulation relation algorithm for

the graphs g and h, and receive R;
Step2 : If R = ∅ then Return (∅, ∅);
Step3 : Compute the sets: EntryR, NextEntryR(r);
Step4 : Π := {E ∩EntryR : E ∈ BB} \ {∅};
Step5 : While Π contains a splitter (a,C) do Π := Refine(Π, a, C);
Step6 : If root1 and root2 are not Π-related then Return (∅, ∅);
Step7 : Return (R,Π).

Figure 6.15: Algorithm for computing probabilistic branching bisimulation.

Lemma 6.6.4. The algorithm can be implemented in polynomial time in the number of states n.

Proof. Let g and h be finite fully probabilistic graphs with n states and m transitions (total number
of states and transitions for both graphs).

For the first part of the algorithm, finding the coarsest bisimulation relation we use the algorithm
in [64] which has time complexity O(n · m). In this step the probabilistic transitions are treated as
internal transitions. The set of entries with respect to R can be found with a depth first search with
the algorithm in [4] (with time complexityO(m)).

Chapter 6. Abstraction 219

The second part of the algorithm consists of solving the system of linear equations and refining
the current partition with respect to a found splitter. The test whether Pathfin,[p]R(p, τ ∗a, C) = ∅
can be done by a reachability analysis of the underlying directed graph. In the worst case we have to
repeat the refinement step n times. And in each of them we have to solve a system of linear equations
with n variables and n equations which takes O(n2.8) time with the method in [4]. Thus we obtain
the time complexity of the second part of the algorithm to be in the worst case O(n3.8).

In total since m ≤ n2 · |Aτ | we obtain O(n3.8) time complexity of the algorithm. �

220 6.6. Probabilistic branching bisimulation

Chapter 7

Applications

7.1 Introduction
This chapter presents several examples using the process algebras previously defined. In the first
example we give a specification of an unreliable communication channel used in a communication
protocol - in this case the PAR protocol. By some additional operators we reduce the specification of
the protocol to a process that can be treated by the technique from Chapter 6. In the second section we
use the discrete-time algebra from Chapter 5 to capture the timing aspects of the protocol behaviour.

The goal of the third section is not a study of system specification but a discussion over some theo-
retical aspects regarding verification techniques for concurrent systems that exhibit both probabilistic
and non-deterministic behaviour. Mainly, we expose some problems and in some cases the solutions
for several questions arising from studying the CABP.

7.2 PAR protocol
In this section, we consider a simple communication protocol called the Positive Acknowledgment
with Retransmission (PAR) protocol [104]. The protocol concerns the communication between two
processes that cooperate in an asynchronous manner. The communication is carried out via a com-
munication channel which communicates in a synchronous way with two processes to which it is
connected. Important properties that one needs to check when considering communication protocols
are: 1) data is not duplicated and 2) data is received in the same order it has been sent. If additionally
the communication channel is considered to be unreliable, then it is of high importance to prove that
no data is lost. This is the case with the PAR protocol where we assume that communication chan-
nels connecting two communicating processes are unreliable. For that purpose, the acknowledgment
mechanism is used to prevent loss of messages; receiving a correct acknowledgment asserts that the
datum sent has been successfully transmitted. The attribute “positive” in the name of the protocol
denotes that only one type of acknowledgment is in use (contrary to the ABP, for instance, where two
types of acknowledgment are used).

7.2.1 Specification
The protocol is modeled as a composition of five processes (cf. Figure 7.1): a sender process S,
which is equipped with a timer T , a receiver R and two communication channels K and L.

221

222 7.2. PAR protocol

1

43

K

5

2

6

S

L

R

T

7

Figure 7.1: Components and connection diagram for the protocol.

The frames that can be transmitted from port 1 to port 2 are of the form (d, b) (db for short) where
d ∈ D for D a finite data set and b ∈ B = {0, 1}. A control bit (0, 1) is used to avoid duplication
of data. The set of atomic actions A contains read, send and communication actions, parametrized
by D × B ∪ {st, to, ack,⊥}, and actions k and l which denote loss of a message and an acknowl-
edgment, respectively. We use the read/send communication function given by rp(x) | sp(x) = cp(x)
for communication port p and message x. In Figure 7.1, communication ports are 1, 2, 3, 4, 5, 6 and
7. At the communication port 1 the sender receives a datum from the upper level (host) and at the
communication port 2 the receiver sends a datum to the upper level.

Behaviour and specification of the sender After it has received a datum at port 1, the sender
sends it to the receiver via a communication channel K through port 3. When the datum is sent
the sender starts the timer (action s7(st)) and waits for an acknowledgment before a new datum is
transmitted. Due to the unreliable channel, the sender either receives an acknowledgment correctly
(action r5(ack)), or something corrupted arrives (action r5(⊥)), or the timer goes off (action r7(to)).
In the first case, the sender changes the control bit and fetches the next message. Otherwise, it
retransmits the datum.

A recursive specification that specifies the behaviour of the sender is given in Figure 7.2. The
following process variables are used: S, SRb, SSdb and SW db for d ∈ D and b ∈ B. In the equation
of SW db we use alternative composition to specify a choice between the possible events. We do it in
this way, because SW db behaves as a receiving process that has to accept every possible message sent,
and the process itself does not determine the outcome of this choice, nor can its internal behaviour
influence this choice.

Sender :
S = SR0

SRb =
∑

d∈D

r1(d) · SSdb (b = 0, 1)

SSdb = s3(db) · s7(st) · SW db (b = 0, 1, d ∈ D)
SW db = r5(ack) · SR1−b + (r5(⊥) + r7(to)) · SSdb (b = 0, 1, d ∈ D)

Figure 7.2: Specification of the sender.

Behaviour and specification of the receiver After having received a valid frame, the receiver
checks the control bit to find out whether the datum has been received earlier. If not, it accepts it,

Chapter 7. Applications 223

writes the message to the output port 2 and sends an acknowledgment to the sender via the chan-
nel L (action s6(ack)). Afterwards it changes the control bit. On the receipt of a duplicate (action
r4(d, 1 − b)) the receiver responds by re-sending the acknowledgment. In case of an invalid mes-
sage arrival (action r4(⊥)) the receiver just ignores it. The specification of the receiver with process
variables R, RW b, RDdb, RAb, for b ∈ B is given in Figure 7.3.

Receiver :

R = RW 0

RW b = r4(⊥) ·RW b +
∑

d∈D

r4(d 1− b) ·RAb +
∑

d∈D

r4(db) ·RSdb (b = 0, 1)

RSdb = s2(d) ·RA1−b (b = 0, 1, d ∈ D)
RAb = s6(ack) ·RW b (b = 0, 1)

Figure 7.3: Specification of the receiver.

Specification of the channels If a message or an acknowledgment is transmitted through the (un-
reliable) channels K or L three scenarios can occur: 1) the message is transmitted correctly, 2) the
message is damaged in transit, 3) the message is lost. Unreliability of the channel K (likewise for L)
is specified as a probabilistic choice between: correct transmission of a message which occurs with
probability π (ρ for L), corruption of a message that occurs with probability σ (η for L) and loss of a
message which occurs with probability 1− π − σ (1− ρ − η for L). The recursive specifications of
the channels are given in Figure 7.4.

Channels :
K =

∑

d∈D,b∈{0,1}

r3(db) ·Kdb

Kdb = (s4(db) tπs4(⊥) tσk) ·K

L = r6(ack) · La

La = (s5(ack) tρs5(⊥) tηl) · L

Figure 7.4: Specification of the two channels.

Specification of the timer The timer process is essential for the correct behaviour of the protocol,
i.e. it behaves as a one-place buffer. If the message sent or the acknowledgment as been lost in a
communication channel, no other action can be performed except the time-out communication action
between the timer and the sender. The time-out message directs the sender to send a duplicate of the
message. Without a timer it is not possible to detect the loss of a message (datum or acknowledgment).
The specification of the timer process, shown in Figure 7.5, is very simple. The sender can reset the
timer any time, but a time out can be generated only if the timer has been set already.

As described in [105] a premature time-out can disturb the functioning of the protocol. If an ac-
knowledgment ack1 is still on the way when a time out occurs prematurely, then the sender retransmits
the current frame, say x. When the acknowledgment ack1 finally arrives, the sender relates it with
the frame just sent x and fetches a new datum, say y, without knowing that there is another acknowl-
edgment ack2 on the way (which in fact acknowledges x). If this acknowledgment arrives correctly,

224 7.2. PAR protocol

T imer :
T = r7(st) · T r

T r = r7(st) · T r + s7(to) · T

Figure 7.5: Specification of the timer.

the sender mistakenly decides that the y has been successfully received and does not retransmits this
frame. In case y gets lost in the channel there is no way it might be retrieved. So, the protocol fails.

In order to prevent a premature time-out we follow the concept of priorities used in [105]. By
this, the time-out action c7(to) is given lower priority than every other action, so it is prevented from
happening if there is some other alternative.

7.2.2 Priorities and priority operator
Priorities in process algebra are introduced for the first time in [12] as a mechanism for process inter-
ruption. ACP was extended with a unary priority operator Θ and an auxiliary binary operator / (unless
operator). The priority operator is parametrized by a partial order < on the set of atomic actions A.
Priorities over atomic actions play a role only between alternatives (in alternative composition) whose
initial actions are related by <. If there are two alternatives a · x and b · y, and if a < b the sum-
mand a · x cannot proceed (it is blocked by b · y) because it has lower priority than b · y. If a and b
are incomparable then no summand is lost. An auxiliary operator / is introduced to obtain a clearer
axiomatization of Θ. It “carries out” the information about the ordering < down to the action level.
(In case A is finite, there is a finite axiomatization of Θ without auxiliary operators, see [33].)

In this section, we extend pACP+ with these two operators; we keep the priority operator and
the alternative composition and just add/modify several axioms that include the probabilistic choice.
In Table 7.1 and Table 7.2 we give the axioms of the priority operator and axioms of the auxiliary
unless operator / in the probabilistic setting. Axiom DyTH3 is a variant of the TH3 axiom in [27].
Again, we restrict the axiom to be applied only on trivial probabilistic processes. This restriction is
not necessary but it is done because letting x and y be arbitrary probabilistic processes goes beyond
the meaning of the priority operator. In fact, it is difficult to give any logical meaning of the right-
hand side of the unless operator if its topmost operator is the probabilistic choice operator. By the
constraint in the axiom DyTH3 this situation is ruled out. Besides, starting from a term without /
operator, no term in the form (x tπy) / z can be derived. Hence, no axiom for terms with such a
structure is included in Table 7.2.

The priority operator Θ can be eliminated from closed terms in favour of the basic operators of
BPAδ. This is not the case with the unless operator. This operator can be eliminated only if both
arguments are terms with associated basic terms in B+. As mentioned earlier, this should not be
considered as a problem, because in the specification of processes this operator appears only as an
auxiliary operator of the priority operator, and the conditional axiom DyTH3 guarantees that its
arguments cannot be different from ones the described above.

In the proof of the Elimination theorem of the Θ operator, since we consider the signature of
pACP+ extended with Θ, we just continue the proof of the Elimination theorem of pACP+ (Theorem
4.2.5 on pg. 94) by adding an item in the induction proof about the priority operator. By pACP+

Θ we
denote the axiom system pACP+ + TH1 + TH2 +DyTH3 + PrTH4 + P1− 6. By closed terms
of pACP+

Θ we mean closed terms over the signature of pACP+ expanded with Θ only.

Theorem 7.2.1 (Elimination theorem of the priority operator). Let p be a closed pACP+
Θ term. Then

there is a closed pBPA term q such that pACP+
Θ ` p = q.

Chapter 7. Applications 225

Θ(a) = a TH1
Θ(x · y) = Θ(x) ·Θ(y) TH2
Θ(x tπy) = Θ(x) tπΘ(y) PrTH4

x = x + x, y = y + y ⇒ Θ(x+ y) = Θ(x) / y + Θ(y) / x DyTH3

Table 7.1: Axioms for the priority operator.

a / b = a if ¬(a < b) P1
a / b = δ if a < b P2
x / (y · z) = x / y P3
x / (y + z) = (x / y) / z P4
x · y / z = (x / z) · y P5
(x+ y) / z = (x / z) + (y / z) P6

Table 7.2: Axioms for the unless operator.

Proof. (Continuation of the inductive proof of Theorem 4.2.5.) Assume that p ≡ Θ(p1) for certain
closed pACP+

Θ term p1. By the induction hypothesis there is a closed pBPA term q1 such that pACP+
Θ `

p1 = q1. By Theorem 3.2.23 there is a basic term r1 such that pBPA ` q1 = r1. Then also, pACP+
Θ `

p1 = r1. By induction on the structure of basic term r1 we prove that there is a basic term r (which
means closed as well) such that pACP+

Θ ` Θ(r1) = r and moreover if r1 ∈ B+ then r ∈ B+.

Case r1 ≡ a, a ∈ Aδ. Then pACP+
Θ ` Θ(r1) = Θ(a) = a and a is a basic pBPA term and a ∈ B+;

Case r1 ≡ a · r′1, a ∈ Aδ and basic term r′1. Then
pACP+

Θ ` Θ(r1) = Θ(a · r′1) = Θ(a) ·Θ(r′1) = a ·Θ(r′1). By induction there is a basic term s′

such that pACP+
Θ ` Θ(r′1) = s′. So, a · s′ is a basic term and moreover a · s′ ∈ B+;

Case r1 ≡ r′1 + r′′1 for basic B+ terms r′1 and r′′1 . Then
pACP+

Θ ` Θ(r1) = Θ(r′1 + r′′1) = Θ(r′1)/ r
′′
1 +Θ(r′′1)/ r

′
1. By the induction hypothesis there are

basic B+ terms s′ and s′′ such that pACP+
Θ ` Θ(r′1) = s′ and pACP+

Θ ` Θ(r′′1) = s′′. Therefore,
pACP+

Θ ` Θ(r1) = s′ / r′′1 + s′′ / r′1. (1)

By induction on the structure of basic B+ terms p and q we prove that there is a basic B+ term
z such that pACP+

Θ ` p / q = z and op(z) ≤ op(p).

Subcase p ≡ a and q ≡ b, a, b ∈ Aδ. The result follows from axioms P1 and P2;

Subcase p ≡ a · p′ and q ≡ b, a, b ∈ Aδ and some basic term p′. pACP+
Θ ` p / q = a · p′ / b =

(a / b) · p′ = c · p′ for c ∈ Aδ which is determined by axioms P1 and P2. Moreover c · p′
is a basic B+ term and op(c · p′) ≤ op(p);

Subcase p ≡ p′ + p′′ and q ≡ b, b ∈ Aδ and p′ and p′′ basic B+ terms. Using axiom P6 we
obtain

226 7.2. PAR protocol

pACP+
Θ ` p / q = (p′ + p′′) / b = (p′ / b) + (p′′ / b). By the induction hypothesis there

are basic B+ terms z′ and z′′ such that pACP+
Θ ` p′ / b = z′, pACP+

Θ ` p′′ / b = z′′ and
op(z′) ≤ op(p′) and op(z′′) ≤ op(p′′). Thus pACP+

Θ ` p / b = z′ + z′′ and z′ + z′′ is a
basic B+ term and op(z′ + z′′) ≤ op(p);

Subcase q ≡ b · q′, b ∈ Aδ, q′ a basic term and p ∈ B+. Using axiom P3 we get: pACP+
Θ ` p/

q = p / (b · q′) = p / b and the result follows from the previous three cases.

Subcase q ≡ q′ + q′′, q′ and q′′ are basic terms and p ∈ B+. Using axiom P4 we obtain:
pACP+

Θ ` p / q = p / (q′ + q′′) = (p / q′) / q′′. By the induction hypothesis we have
that there is a basic B+ term z′ such that pACP+

Θ ` p / q′ = z′ and op(z′) ≤ op(p).
Now we are allowed to use the induction hypothesis again and we obtain that there is a
basic B+ term z′′ such that pACP+

Θ ` z′ / q′′ = z′′ and op(z′′) ≤ op(z′). Thus we obtain
pACP+

Θ ` p / q = z′′ and op(z′′) ≤ op(p).

This result now can be applied on (1). Therefore, there are basic B+ terms s1 and s2 such that
pACP+

Θ ` s′ / r′′1 = s1 and pACP+
Θ ` s′′ / r′1 = s2. Hence, pACP+

Θ ` Θ(r1) = s1 + s2 and
s1 + s2 is a basic B+ term;

Case r1 ≡ r′1 tπr
′′
1 for basic terms r′1 and r′′1 and π ∈ 〈0, 1〉. Then pACP+

Θ ` Θ(r1) =
Θ(r′1 tπr

′′
1) = Θ(r′1) tπΘ(r′′1). By the induction hypothesis there are basic terms s′ and s′′ such

that pACP+
Θ ` Θ(r′1) = s′ and pACP+

Θ ` Θ(r′′1) = s′′. Therefore, pACP+
Θ ` Θ(r1) = s′ tπs

′′

and s′ tπs
′′ is a basic term.

�

The operational semantics for the added operators is defined by the deduction rules in Table 7.3
and 7.4. Without going into details we claim that:

1. the semantics of pACP+ extended with Θ and / operators including the deduction rules in Table
7.3 and 7.4 constitutes a model of pACP+

Θ;

2. The operational semantics of pACP+
Θ is an operational conservative extension of the operational

semantics of pACP+ (with respect to probabilistic strong bisimulation);

3. pACP+
Θ is a equational conservative extension of pACP+;

4. The completeness property holds for all closed terms of pACP+
Θ that do not contain the / operator.

p ; x

Θ(p) ; Θ(x)

x
a→ p, and for all b > a. x 6 b→

Θ(x)
a→ Θ(p)

x
a→√, and for all b > a. x 6 b→

Θ(x)
a→√

Table 7.3: Deduction rules for the priority operator.

Chapter 7. Applications 227

p ; x

p / q ; x / q

x
a→ p, and for all b > a. x 6 b→

x / q
a→ p

x
a→√, and for all b > a. x 6 b→

x / q
a→ √

Table 7.4: Deduction rules for the unless operator.

7.2.3 Verification
Premature time-outs are prevented by giving c7(to) a lower priority than any other action. Hence, on
the set of atomic actions A the following partial ordering is defined:

1. a < c7(st), for each a ∈ A \ {c7(st)};

2. c7(to) < a, for each a ∈ A \ {c7(to)}.
By giving c7(st) a higher priority than the other actions we express that immediately after sending

a message the timer is started. This assumption is very realistic because in such a system a com-
munication between the sender and the timer is usually faster than a communication between other
processes in the system. In any case, it is not essential for the correctness of the protocol.

The behaviour of the protocol is obtained by composition of the five processes:

PAR = τI ◦Θ ◦ ∂H(S ‖T ‖K ‖L ‖R),

where
• H = {ri(x), si(x) : 2 ≤ i ≤ 7, x ∈ (D × B) ∪ {ack,⊥, st, to}} is the set of encapsulated

atomic actions and
• I = {ci(x)|i ∈ {3, 4, 5, 6, 7}, x ∈ (D ×B) ∪ {ack,⊥, st, to}} ∪ {k, l}.

We need to prove that:
PAR =

∑

d∈D

r1(d) · s2(d) · PAR.

In the first part of the proof we linearize the expression Θ◦∂H(S ‖T ‖K ‖R ‖L) using the axioms
of pACP+ and eliminate every occurrence of ‖ operator. As a result a guarded recursive specification
is obtained with the root variable [S ‖T ‖K ‖R ‖L]. [X] is used as an abbreviation of Θ ◦ ∂H(X).
The graphical representation of the process is given in Figure 7.7. (How to read the graph: we omit
probabilistic transitions labelled with probability 1 - trivial probabilistic transitions. The black notes
represent non-probabilistic states, and the white nodes represent probabilistic states.)

Directly from the equations we obtain:

[SSdb ‖T ‖K ‖RW b ‖L] = [SSdb ‖T r ‖K ‖RW b ‖L],
[

SRb ‖T ‖K ‖RW b ‖L
]

= [SRb ‖T r ‖K ‖RW b ‖L],
[

SSdb ‖T ‖K ‖RW 1−b ‖L
]

=
[

SSdb ‖T r ‖K ‖RW 1−b ‖L
]

.

In short, we will describe how some occurrences of the alternative composition operator have
been eliminated in the derivation of the recursive specification in Figure 7.6. First of all, the alter-
native composition operators which are obtained by applying conditional axiom PrMM4 are elim-
inated by using the encapsulation operator. Secondly, by merge of terms whose initial actions are

228 7.2. PAR protocol

[S ‖T ‖K ‖R ‖L] = [SR0 ‖T ‖K ‖RW 0 ‖L]
[

SRb ‖T ‖K ‖RW b ‖L
]

=
∑

d∈D

r1(d) ·
[

SSdb ‖T ‖K ‖RW b ‖L
]

[

SSdb ‖T ‖K ‖RW b ‖L
]

= c3(db) · c7(st) ·
[

SW db ‖T r ‖Kdb ‖RW b ‖L
]

[

SW db ‖T r ‖Kdb ‖RW b ‖L
]

= c4(db) ·
[

SW db ‖T r ‖K ‖RSdb ‖L
]

tπ

c4(⊥) ·
[

SW db ‖T r ‖K ‖RW b ‖L
]

tσ

k ·
[

SW db ‖T r ‖K ‖RW b ‖L
]

[

SW db ‖T r ‖K ‖RSdb ‖L
]

= s2(d) ·
[

SW db ‖T r ‖K ‖RA1−b ‖L
]

[

SW db ‖T r ‖K ‖RW b ‖L
]

= c7(to) ·
[

SSdb ‖T ‖K ‖RW b ‖L
]

[

SW db ‖T r ‖K ‖RA1−b ‖L
]

= c6(ack) ·
[

SW db ‖T r ‖K ‖RW 1−b ‖La
]

[

SW db ‖T r ‖K ‖RW 1−b ‖La
]

= c5(ack) ·
[

SR1−b ‖T r ‖K ‖RW 1−b ‖L
]

tρ

c5(⊥) ·
[

SSdb ‖T r ‖K ‖RW 1−b ‖L
]

tη

l ·
[

SW db ‖T r ‖K ‖RW 1−b ‖L
]

[

SSdb ‖T r ‖K ‖RW 1−b ‖L
]

= c3(db) · c7(st) ·
[

SW db ‖T r ‖Kdb ‖RW 1−b ‖L
]

[

SW db ‖T r ‖K ‖RW 1−b ‖L
]

= c7(st) ·
[

SSdb ‖T ‖K ‖RW 1−b ‖L
]

[

SW db ‖T r ‖Kdb ‖RW 1−b ‖L
]

= c4(db) ·
[

SW db ‖T r ‖K ‖RA1−b ‖L
]

tπ

c4(⊥) ·
[

SW db ‖T r ‖K ‖RW 1−b ‖L
]

tσ

k ·
[

SW db ‖T r ‖K ‖RW 1−b ‖L
]

[

SSdb ‖T ‖K ‖RW 1−b ‖L
]

= c3(db) · c7(st) ·
[

SW db ‖T r ‖Kdb ‖RW 1−b ‖L
]

[

SRb ‖T r ‖K ‖RW b ‖L
]

=
∑

d∈D

r1(d) ·
[

SSdb ‖T r ‖K ‖RW b ‖L
]

[

SSdb ‖T r ‖K ‖RW b ‖L
]

= c3(db) · c7(st) ·
[

SW db ‖T r ‖Kdb ‖RW b ‖L
]

Figure 7.6: Recursive specification of process.

not encapsulated, two sub-terms containing alternative composition operator are obtained. Firstly,
we obtain the following sub-term: c7(st) · Q + (c4(db) · X tπc4(⊥) · Y tσk · Y), for some pro-
cesses variables Q,X and Y . Applying the distribution laws and the axioms of the Θ operator on
this term and taking into account the partial ordering of the set of atomic actions, we obtain that
Θ(c7(st) ·Q+ (c4(db) ·X tπc4(⊥) ·Y tσk ·Y)) = c7(st) ·Θ(Q). (This situation corresponds to the
state of the system in which in parallel the timer might be started or the message might be delivered to
the receiver and as a result of the interleaving model non-determinism occurs. Under the assumption
that the timer is started immediately after sending the message from the sender, it follows that this
non-deterministic choice actually is deterministic1.

In the second situation we obtain a non-deterministic choice between two processes, one rep-
resented by term c7(to) · R and another process which we denote by term P that has the form
a · Z tρb · U tηc · V or a · Z for certain processes variables R, Z, U , V and atomic actions a,
b and c. (There are more variants where non-determinism with c7(to) · R occurs and we consider
all of them in general.) Again, using the axioms of Θ operator and axioms of pACP+ and the par-
tial ordering defined on the set A we obtain that Θ(c7(to) · R + P) = Θ(P) and P does not have
non-deterministic choice.

The only alternative composition operator left in the specification is
∑

d∈D r1(d), i.e. reading
a datum d ∈ D at the port 1. To make the verification of the protocol formally right we have to
assume that D is a singleton. In this case the recursive specification in Figure 7.6 represents a fully
probabilistic process. Then, it is a specification in fpBPA and the τI operator can be applied on it in

1A different choice for the partial order on atomic actions might have resulted in a process with non-determinism, such
that abstraction cannot be applied.

Chapter 7. Applications 229

x

x

x

x

8

9 10

11

x

x

x

12

15

16

17

18

x

x

2

1

4

5

6

7

x

x

x

x

x

x

19 x

14

20

σ

c7(st) c3(e1 − b)

π

3

c7(to)

σ

1 − π − σ

c4(⊥)

k

c5(ack)

c7(st)

c3(db)

13
1 − π − σ

σ
c4(⊥)

k

c7(to)

ρ

η

k 1 − π − σ

π
σ

c4(db)

1 − ρ − η

c5(⊥)
c3(e1 − b)

c4(e1 − b)

l

c5(ack)

c7(st)

c4(⊥)

k1 − π − σ

c4(⊥)

c7(st)

r1(d)

c7(st)

c3(db)

π

c4(db)

s2(d)

c6(ack)

l

c4(e1 − b)

r1(d)

c7(st)

π

s2(e)

c6(ack)

ρ

1 − ρ − η

η

c5(⊥)

Figure 7.7: Process described by the specification in Figure7.6

230 7.2. PAR protocol

Y = Y 0
1

Y b
1 =

∑

d∈D

r1(d) · Y db
2 Y db

5 = c6(ack) · Y db
6

Y db
2 = c3(db) · Y db

3 Y db
6 = τ · Y db

7 t1−ρτ · Y 1−b
1

Y db
3 = τ · Y db

2 t1−πc4(db) · Y db
4 Y db

7 = c3(db) · Y db
8

Y db
4 = s2(d) · Y db

5 Y db
8 = c4(db) · Y db

5 tπτ · Y db
7

Figure 7.8: Recursive specification after first abstraction step.

order to rename actions from I into τ . This will be done in three steps. (Here we use the property
of the abstraction operator which expresses that τI ◦ τK = τI∪K for disjoint sets of atomic actions
I and K.) Each step reduces the recursive specification from the previous step to a simpler guarded
recursive specification on which some verification rule can be applied. In the last step we apply the
RSP principle. However, as one can notice from the verification proof that follows, the alternative
composition in the form of

∑

d∈D r1(d), for D an arbitrary finite set, is harmless for the correctness of
the proof. After a datum is received a non-deterministic state is not reached till the cycle is finished;
in the Figure 7.7 this reads as: the process shows probabilistic behaviour from the state 2 till reaching
the state 11. When process is in state 11 it receives a new datum and continues with its probabilistic
behaviour. For this reasons, we do not remove the expression

∑

d∈D r1(d) from the specifications that
follow, even we know that this makes the verification proof slightly imprecise.

First abstraction We take: I ′ = {c5(x) : x ∈ D × B} ∪ {c7(st), c7(to), c4(⊥), c5(⊥), k, l}.
Applying axiom x = x · τ we obtain:

τI′(SW
db ‖T r ‖K ‖RW b ‖L) = τ · τI′(SSdb ‖T ‖K ‖RW b ‖L) and

τI′(SW
db ‖T r ‖K ‖RW 1−b ‖L) = τ · τI′(SSdb ‖T ‖K ‖RW 1−b ‖L).

We derive a new guarded recursive specification given in Figure 7.8 from the recursive specification
in Figure 7.6.

Second abstraction Next we take: I ′′ = {c4(x), c3(x) : x ∈ D × B}. For D a singleton and a
fixed b we apply PV R12 on the equations for Y db

2 and Y db
3 and obtain:

τ · τI′′(Y db
2) = τ · τI′′(Y db

4).

Also, we apply PV R12 on the equations for Y db
7 and Y db

8 and obtain:

τ · τI′′(Y db
7) = τ · τI′′(Y db

5).

From the recursive specification in Figure 7.8 we obtain a simpler guarded recursive specification
given in Figure 7.9.

Third abstraction Finally we take I ′′′ = {c6(ack)}. Applying PV R2 on the equations for Zdb
3 and

Zdb
4 we obtain:

τ · τI′′′(Zdb
3) = τ · τI′′′(Z1−b

1).

Chapter 7. Applications 231

Z = Z0
1

Zb
1 =

∑

d∈D

r1(d) · Zdb
2

Zdb
2 = s2(d) · Zdb

3

Zdb
3 = c6(ack) · Zdb

4

Zdb
4 = τ · Z1−b

1 tρτ · Zdb
3

Figure 7.9: Recursive specification after the second abstraction.

Therefore,
τI′′′(Z

b
1) =

∑

d∈D

r1(d) · τI′′′(Zdb
2)

=
∑

d∈D

r1(d) · s2(d) · τI′′′(Zdb
2)

=
∑

d∈D

r1(d) · s2(d) · τI′′′(Z1−b
1)

Then from above it follows that:

τI(Z
0
1) =

∑

d∈D

r1(d) · s2(d) · τI(Z1
1)

and also
τI(Z

1
1) =

∑

d∈D

r1(d) · s2(d) · τI(Z0
1).

According to RSP we obtain τI′′′(Z0
1) = τI′′′(Z

1
1). Hence,

τI(Z
0
1) =

∑

d∈D

r1(d) · s2(d) · τI(Z0
1).

�

7.3 PAR protocol in discrete-time model
The PAR protocol described in the previous section shows timing behaviour that in the untimed the-
ory was specified by means of the priority operator parametrized by a partial ordering on the set of
atomic actions. With the ability to express quantitatively the timing characteristics of the protocol, the
priority operator is not needed when the protocol is considered in timed process theory [44, 23]. Since
pACP+

drt is feasible to reason quantitatively about time, the time process T introduced in the untimed
specification of the protocol is left out and time-out aspects are integrated in the specification of the
sender behaviour. Instead of a time-out action, the sender process is parametrized by T (time-out
period) denoting the period of time that it waits for an acknowledgment from the receiver. Thus, the
protocol is modeled by four processes: a sender process S, a receiver R and communication channels
K and L. The sender receives data from at port 1 and sends it to the receiver via a communication
channel K trough port 3. After that, it waits for an acknowledgment from the receiver R (at port 5)
before a new datum is transmitted. If an acknowledgment does not occur within period of time T
(T ∈ IN), the sender resends the old datum. The receiver receives data from the channel K at port 4
and if the data are undamaged it delivers them to the upper level (at port 2) and sends an acknowledg-
ment to the sender through the channel L (at port 6). A control bit is used in order to avoid multiple

232 7.3. PAR protocol in discrete-time model

writing of a message at the output port just like in the previous specification. The times dK and dL

denote the delay through the channels K and L, and dR denotes the message processing time taken
by the receiver. For the correctness of the protocol the duration of the time-out period is of crucial
importance. As we will see later, it should be longer than the sum of the delays through the channels
and message processing time by the receiver, i.e., T > dK + dL + dR.

Again we assume that D is a finite set of data. The set of atomic actions A contains read, send
and communication actions and k and l actions which present loss of a message and loss of an ac-
knowledgment, respectively. The read/send communication function given by rk(x) | sk(x) = ck(x)
for communication port k and message x is used. Unreliability of the channel K is specified by
the probabilistic choice operator. The specifications of the four processes are given by the following
recursive equations:

Sender : S = SR0

SRb =
∑

d∈D

r1(d) · SSdb (b = 0, 1, d ∈ D)

SSdb = s3(db) · SW dbT

SW dbT = r5(ack) · σrel(SR
1−b) + r5(⊥) · σrel(SS

db)

+
T−1
∑

t=1

σt
rel(r5(ack) · σrel(SR

1−b)) +
T−1
∑

t=1

σt
rel(r5(⊥) · σrel(SS

db)) + σT
rel(SS

db)

Receiver : R = RW 0

RW b =
∑

d∈D

r4(db) ·RSdb +
∑

d∈D

r4(d(1− b)) ·RAb + r4(⊥) ·RW b

RSdb = s2(d) · σdR
rel (RA1−b) (dR ≥ 1)

RAb = s6(ack) · σrel(RW
b)

Channels: K =
∑

d∈D,b∈{0,1} r3(db) · σdK
rel (Kdb) (dK ≥ 1)

Kdb = (s4(db) tπs4(⊥) tαk) · σrel(K)

L = r6(ack) · σdL
rel (La) (dL ≥ 1)

La = (s5(ack) tηs5(⊥) tζ l) · σrel(L)

First we expand the term ∂H(S ‖K ‖L ‖R) which describes the behaviour of the PAR protocol.
We take H to be the set of all actions of sending or receiving messages at internal ports: 3, 4, 5 and
6. dXe is used as abbreviation for Θ ◦ ∂H(X). The obtained recursive specification is given in Figure
7.10. The graphical representation of the process described by this specification is shown n Figure
7.11. (How to read the graph: we omit trivial probabilistic transitions - transitions labelled with
probability 1. The black notes represent non-deterministic states. The gray nodes basically do not
represent processes but we use them to separate clearly action transitions from time transitions. Time
transitions are denoted by dotted arrows and are labelled by the number of time slices that transitions
take. For instance, the transition labelled with dK that starts in a gray node and ends in the node 3
means that the process represented by state 3 idles dK time slices.)

In order to obtain the specification in Figure 7.10 we have to assume the following:

1. dK ≥ 1, dR ≥ 1 and dL ≥ 1;

Chapter 7. Applications 233

dS ‖K ‖R ‖Le = dSR0 ‖K ‖RW 0 ‖Le
dSRb ‖K ‖RW b ‖Le =

∑

d∈D

r1(d) · dSSdb ‖K ‖RW b ‖Le

dSSdb ‖K ‖RW b ‖Le = c3(db) · σdK
rel (dSW db(T−dK) ‖Kdb ‖RW b ‖Le)

dSW db(T−dK) ‖Kdb ‖RW b ‖Le = c4(db) · dSW db(T−dK) ‖ σrel(K) ‖RSdb ‖Le tπ

c4(⊥) · σT−dK
rel (dSSdb ‖T r ‖K ‖RW b ‖Le) tα

k · σT−dK
rel (dSSdb ‖K ‖RW b ‖Le)

dSW db(T−dK) ‖ σrel(K) ‖RSdb ‖Le = s2(d) · σdR
rel (dSW db(T−dK−dR) ‖K ‖RA1−b ‖Le)

dSW db(T−dK−dR) ‖K ‖RA1−b ‖Le = c6(ack) · σdL
rel (dSW dbT ′ ‖K ‖RW 1−b ‖Lae)

dSW dbT ′ ‖K ‖RW 1−b ‖Lae = c5(ack) · σrel(dSR1−b ‖K ‖RW 1−b ‖Le) tη

c5(⊥) · σrel(dSSdb ‖K ‖RW 1−b ‖Le) tζ

l · σT−dK−dR−dL
rel (dSSdb ‖K ‖RW 1−b ‖Le)

dSSdb ‖K ‖RW 1−b ‖Le = c3(db) · σdK
rel (dSW db(T−dK) ‖Kdb ‖RW 1−b ‖Le)

dSW db(T−dK) ‖Kdb ‖RW 1−b ‖Le = c4(db) · dSW db(T−dK) ‖ σrel(K) ‖RA1−b ‖Le tπ

c4(⊥) · σT−dK
rel (dSSdb ‖K ‖RW 1−b ‖Le) tσ

k · σT−dK
rel (dSSdb ‖K ‖RW 1−b ‖Le)

dSW db(T−dK) ‖K ‖RA1−b ‖Le = c6(ack) · σdL
rel (dSW db ‖Kdb ‖RW 1−b ‖Lae)

dSW db(T−dK−dL) ‖K ‖RA1−b ‖Lae = c5(ack) · σrel(dSR1−b ‖K ‖RW 1−b ‖Le) tη

c5(⊥) · σrel(dSSdb ‖K ‖RW 1−b ‖Le) tζ

l · σT−dK−dL
rel (dSSdb ‖K ‖RW 1−b ‖Le)

Figure 7.10: Encapsulated parallel composition of the components (T ′ = T − dK − dR − dL).

2. T > dK , otherwise we obtain equality: dSW db(T−dK) ‖Kdb ‖RW b ‖Le = c4(db) · δ tπc4(⊥) ·
δ tαk · δ;

3. T > dK + dR, otherwise we obtain equality: dSW db(T−dK) ‖σrel(K) ‖RSdb ‖Le = s2(d) · δ;

4. T > dK + dR + dL, otherwise we obtain equality: dSW db(T−dK−dR) ‖K ‖RA1−b ‖Le =
c6(ack) · δ.

Assuming that the recursive specification in Figure 7.10 defines a unique process, we can trans-
form it into a simpler specification as given in Figure 7.12

The specification shows that every resending of a message is preceded by a delay (whose length
depends on the time slice at which the channel lost the message) in the equation of X db

3 the sub-
term k · σT−dK

rel (Xdb
2), in the equation of Xdb

6 the sub-term l · σT−dK−dR−dL
rel (Xdb

7), In the equitation
of Xdb

8 the sub-terms c4(⊥) · σT−dK
rel (Xdb

7) and k · σT−dK
rel (Xdb

7) and the equation of Xdb
10 the sub-term

l·σT−dK−dL
rel (Xdb

7). Thus, as described above we conclude that if the time-out period T < dK+dR+dL

at least one of these subterms becomes δ and the process deadlocks; our assumptions are not satisfied.
Hence, the protocol does not deadlock iff T > dK + dR + dL.

234 7.3. PAR protocol in discrete-time model

x

x

2

3
x

x

6

18

17

16

1

20 19

5

4

7

8 9 10

11

12

13

14

15

c5(⊥)

ζ

c5(⊥)

T − dK − dR − dL

α

r1(e)

c3(e1 − b)

1 − π − α

c4(e1 − b)

s2(e)

c3(e1 − b)

c4(e1 − b)

c3(db)

dK

α

1 − π − α

π

c4(db)

s2(d)

dR

c6(ack)

dL

η

1 − η − ζ

l

1

c5(⊥)

c4(db) c6(ack)

c4(⊥)
k

1 − η − ζ

ζ

T − dK

T − dK

c4(⊥)

k
dK

α

1 − π − α

π

dL

dR

c6(ack)

ζ

η

1 − η − ζl

π
c6(ack)

π dL

c5(ack)

T − dK − dR − dL

1

α

c4(⊥)
k

T − dK

ζ

l

c5(ack)

1

T − dK − dL

1

c4(⊥)

k

c5(ack)

T − dK

η

dL

1 − π − α
η

1 − η − ζ

c5(⊥)

dK

l

c5(ack)

1

T − dK − dL

1

r1(d)

dK

c3(db)

Figure 7.11: Process describe by the specification in Figure 7.10.

Chapter 7. Applications 235

X = X0
1

Xb
1 =

∑

d∈D

r1(d) ·Xdb
2

Xdb
2 = c3(db) · σdK

rel (Xdb
3)

Xdb
3 = c4(db) ·Xdb

4 tπc4(⊥) · σT−dK
rel (Xdb

2) tαk · σT−dK
rel (Xdb

2)

Xdb
4 = s2(d) · σdR

rel (Xdb
5)

Xdb
5 = c6(ack) · σdL

rel (Xdb
6)

Xdb
6 = c5(ack) · σrel(X

(1−b)
1) tηc5(⊥) · σrel(X

db
7) tζ l · σT−dK−dR−dL

rel (Xdb
7)

Xdb
7 = c3(db) · σdK

rel (Xdb
8)

Xdb
8 = c4(db) ·Xdb

9 tπc4(⊥) · σT−dK
rel (Xdb

7) tαk · σT−dK
rel (Xdb

7)

Xdb
9 = c6(ack) · σdL

rel (Xdb
10)

Xdb
10 = c5(ack) · σrel(X

1−b
1) tηc5(⊥) · σrel(X

db
7) tζ l · σT−dK−dL

rel (Xdb
7)

Figure 7.12: Specification obtained from the specification in Figure 7.10.

Time abstraction Next, we will show that the protocol behaves as a one-place buffer. But since
we do not have a technique to work with internal actions in a timed setting we will derive a time
free specification from the one obtained above by using a method called time abstraction [42, 23].
It is achieved by the time free projection operator πtf which renames an undelayable action a into a
delayable action a and removes all occurrences of the delay operator σrel. In fact, πtf embeds pACP+

drt
into pACP+ in a way that every delayable action becomes an untimed action. The axioms for πtf

operator are shown in Table 7.5 where a ranges over Aδ.

πtf(a) = a DRTFP1
πtf(σrel(x)) = πtf(x) DRTFP2
πtf(x + y) = πtf(x) + πtf(y) DRTFP3
πtf(x · y) = πtf(x) · πtf(y) DRTFP4
πtf(x tρy) = πtf(x) tρπtf(y) PrDRTFP

Table 7.5: Axioms for the time free operator.

Back to our specification, the next step is to derive a time free specification πtf(X) for X . The
recursive specification after the πtf operator is applied on Xdb

i consists of the following equations:

Y = Y 0
1

Y b
1 =

∑

d∈D

r1(d) · Y db
2

Y db
2 = c3(db) · Y db

3

Y db
3 = c4(db) · Y db

4 tπc4(⊥) · Y db
2 tαk · Y db

2

Y db
4 = s2(d) · Y db

5

Y db
5 = c6(ack) · Y db

6

Y db
6 = c5(ack) · Y d(1−b)

1 tηc5(⊥) · Y db
7 tζ l · Y db

7

Y db
7 = c3(db) · Y db

8

Y db
8 = c4(db) · Y db

5 tπc4(⊥) · Y db
7 tαk · Y db

7

236 7.4. Verification rules

If we abstract from atomic actions I ′ = {c4(x), c5(x) : x ∈ D × B} ∪ {c7(st), c7(to), k, l}
exactly the recursive specification (1) on page 230 (with the root variable Y) is obtained. Hence, any
further investigation will be superfluous.

7.4 Verification rules - revisited
In this section, we discuss once again the issue of verification rules for probabilistic systems. We
believe that the rules we proposed in Chapter 6 can be applied on a large number of real processes .
But still, they are not applicable on probabilistic systems that contain non-determinism. Here we will
try to answer some questions, but also we will pose some more questions that are still open. So, this
section can be seen as some ideas for future research directions.

Basically the initial ideas arose when we did a probabilistic specification of the Concurrent Alter-
nating Bit Protocol (CABP). Since the main intention of this section is to give the reader an insight
to our concept of dealing with non-determinism in probabilistic processes, we do not aim to give a
complete description of the protocol. We refer the reader to [109] for more details. The CABP is a

more complicated variant of the well-known Alternating Bit Protocol (ABP). While in the ABP one
a message is sent, and it is not re-transmitted until a “negative” acknowledgment is received (saying
that something wrong has happened during the transmission), in the CABP a stream of frames is sent
continuously until a positive acknowledgment arrives confirming a correct delivery of the datum sent.

In [109], the protocol is specified by six processes (as shown in Figure 7.13): sender S, receiver
R, acknowledgment sender AS, acknowledgment receiver AR and two channels K and L, the first
one used to transmit data and the second one used to transmit acknowledgments. The six components
are divided into two modules: one module formed by S, K and R and another module consisting of
AS, L and AR. In the first module, the stream of frames flows from S to R. The second module
contains the stream of acknowledgments from AS to AR. Let us focus on the first module. In Figure
7.14, we give the recursive equations that define the behaviour of these three processes. Our (proba-
bilistic) specification of these processes resembles the specification in [109]. The only difference is
the specification of the channel which in our case is modeled by the means of the probabilistic choice
operator (as Section 7.2 and 7.3).

1

43

K

6

8

7

5

2
S R

L

AR AS

Figure 7.13: Components of the CABP.

Chapter 7. Applications 237

Sender :
S = RM(0)
RM(b) =

∑

d∈D

r1(d) · SF (db), b ∈ {0, 1}
SF (db) = s3(db) · SF (db) + r8(ac) · RM(1− b), db ∈ D × {0, 1}

Receiver :
R = RF (0)
RF (b) =

∑

d∈D

r4(db) ·RS(b)

+
∑

d∈D

r4(d, 1− b) · RF (b)

+r4(⊥) · RF (b), b ∈ {0, 1}
RS(b) = s2(d) · s5(ac) · RF (1− b)

Channel :
Kr =

∑

d∈D,b∈{0,1}

r3(db) ·Ks(db)

Ks(db) = (s4(db) tπ s4(⊥) tρ k) ·Kr, db ∈ D × {0, 1}

Figure 7.14: Specification of the sender, the receiver and the channel.

D denotes a finite set of data elements. Communication actions c3(db), c4(db) and c3(⊥) as well
as action k are internal actions for this module. Therefore, we take I = {c3(db), c4(db), c3(⊥), k :
db ∈ D× {0, 1}}. Also we encapsulate send and receive actions and take H = {s3(db), s4(db), s3(⊥
), r3(db), r4(db), r3(⊥) : db ∈ D × {0, 1}}. Moreover, with a slight modification, the technique
introduced in [109] called “language matching” can be adapted for our probabilistic process algebra.

Briefly we describe the idea of the language matching technique. In process specification and veri-
fication in process algebra it often happens that a term p has “redundancies in a context ∂H(q)(‖ q)”.
This means that p has certain subterms that are eliminated in the context ∂H(q)(‖ q) due to en-
capsulation ∂H . For instance, redundancy can simply occur when some subterms of p are always
encapsulated, and they do not communicate with subterms of q. The language matching is a method
that is used to find and label possible redundancies at an early stage of a verification. It is used to find
and label redundant terms in a given context, given some information about the expected behaviour of
the total system in the form of a collection of process traces. The labelling technique used in language
matching consists of a mechanism for replacing terms that do not match some given set of traces Z,
by a special atomic action r. The language matching operator introduced in [109] is denoted by4Z .

Back to our specification, next, we investigate the following expression:

τI ◦ 4Z ◦ ∂H(S ‖K ‖R),

where Z contains all traces that do not match the language containing concatenation of trace
r1(d)s2(d)s5(ac)r8(ac).

We will not give the complete specification derived for the expression above, but we will point
out some equations from the recursive specification that lead us to the desired goal.

Consider parallel composition SF (db) ‖K ‖RS(b). Informally, it corresponds to the moment
that a frame has been successfully delivered to R but since S has not received an acknowledgment
yet it still can send the same frame to R via K. At the same time S is ready to communicate at port 8
waiting for the acknowledgment. We derive that

4Z ◦∂H(SF (db) ‖K ‖RS(b)) = r8(ac) ·r+s2(d) ·U+c3(db) ·4Z ◦∂H(SF (db) ‖Ks(db) ‖RS(b)),

238 7.4. Verification rules

for some process U not of our interest at this point. r is a process obtained by applying the 4Z

operator. Also we consider the parallel composition SF (db) ‖Ks(db) ‖RS(b) which corresponds to
the situation similar to the one above, with the difference that a frame from S to R is in transit. For
this expression we obtain:

4Z ◦ ∂H(SF (db) ‖Ks(db) ‖RS(b)) = r8(ac) · r +s2(d) · U

+(δ tπ+ρk) · 4Z ◦ ∂H(SF (db) ‖K ‖RS(b))

By abstraction we obtain the following equations:

τ · τI ◦ 4Z ◦ ∂H(SF (db) ‖K ‖RS(b))

= τ · τI
(

r8(ac) · r + s2(d) · U + c3(db) · 4Z ◦ ∂H(SF (db) ‖Ks(db) ‖RS(b)
)

= τ ·
(

r8(ac) · r + s2(d) · τI(U) + τ ·
(

r8(ac) · r + s2(d) · τI(U)

+ (δ tπ+ρτ) · τI ◦ 4Z ◦ ∂H(SF (db) ‖K ‖RS(b))
)

)

= τ · (y + τ · (y + z)),

for y ≡ r8(ac) · r + s2(d) · τI(U) and z ≡ (δ tπ+ρτ) · τI ◦ 4Z ◦ ∂H(SF (db) ‖K ‖RS(b)). On the
other side, we transform the second expression as:

τ · τI ◦ 4Z ◦ ∂H(SF (db) ‖Ks(db) ‖RS(b))

= τ ·
(

r8(ac) · r + s2(d) · τI(U) + (δ tπ+ρτ) · τI ◦ 4Z ◦ ∂H(SF (db) ‖K ‖RS(b)
)

= τ · (y + z).

To resume, we have obtained that

τ · τI ◦ 4Z ◦ ∂H(SF (db) ‖K ‖RS(b)) = τ · (x+ τ · (x+ y))

and
τ · τI ◦ 4Z ◦ ∂H(SF (db) ‖Ks(db) ‖RS(b)) = τ · (x + y).

We argue that these two processes should be considered equivalent. First, let us note that by our
transformation we have reached processes that by their structure resemble the left-side and the right-
side expressions of axiom B2 (see Chapter 6). Second, consider the processes in Figure 7.15. The
left process corresponds to a term τ · (y + τ · (y + (z1 tπz2))) and the right one corresponds to
τ · (y + (z1 tπz2)), similar to the expression we have obtained above. One can notice that in both
processes (after the initial action τ is performed), no matter what activity it does, it always reaches a
state in which y can be chosen non-deterministically. On the other side, if y is not performed, then z1

or z2 is performed according to the same probability distribution in both processes. This gives us an
idea that the axiom B2 should hold for probabilistic processes too. However, we have to make one
restriction about processes y, namely, it is required to be a trivial static process. Thus, we suggest that
in the probabilistic setting we should have the following conditional axiom:

y = y + y ⇒ x · (τ · (y + z) + y) = x · (y + z), (PrB2).

Consequently, we obtain that

τ · τI ◦ 4Z ◦ ∂H(SF (db) ‖K ‖RS(b)) = τ · τI ◦ 4Z ◦ ∂H(SF (db) ‖Ks ‖RS(b)),

Chapter 7. Applications 239

F�FF�FG�GG�G H�HH�H
I�II�I J�JJ�JK�KK�K

L�L�LL�L�LL�L�L
M�M�MM�M�MM�M�M

N�NN�NN�N
O�OO�OO�O P�P�PP�P�PQ�Q�QQ�Q�Q R�RR�R

S�SS�S T�TT�T
U�UU�U V�VV�V

W�WW�W1 − ππ

1

z1

z2

y z2

τ

y

y

1

τ · (y + τ · (y + (z1 πz2)))

τ

τ · (y + (z1 πz2))

π 1 − π

y z1 y

Figure 7.15: Processes that should be related.

that leads us to the conclusion that τ ·τI ◦4Z ◦∂H(SF (db) ‖Ks ‖RS(b)) is a solution of the following
recursive equation:

X = τ · (r8(ac) · r + s2(d) · τI(U) + (δ tπ+ρτ) ·X).

If we replace the process r8(ac) · r + s2(d) · τI(U) by some arbitrary process, say z, then the left

X�XX�XY�YY�YZ�ZZ�Z[�[[�[\�\\�\
]�]]�]

τ

1

Z

1

Z Z

τ

1

τ

π 1 − π

Figure 7.16: Processes that should be related.

process in Figure 7.16 corresponds to the solution of equation X = Z tπ(Z + i · X), where i is
an internal action. Informally, it is a process that chooses to behave as Z with probability π. With
probability 1 − π it reaches a state at which it chooses non-deterministically to behave as Z or it
makes an internal step to the initial state. Clearly, this process will eventually reach sub-process Z.
In other words, it behaves like Z with probability 1. Therefore, it should be considered equivalent to
the second process given in Figure 7.16. Thus, we are inclined to consider the following verification
rule:

Y = Z tπ(Z + i · Y), i ∈ I

τ · τI(Y) = τ · τI(Z)
(PV R)

under the assumption that Z represents a trivial static process. One can notice that in order to state
this rule we do not need the fairness assumption. Even if the non-deterministic choice Z + i · Y will
unfairly be resolved in the favour of the summand i · Y the result will still be the same. This situation
actually is already captured by the rule PV R1.

240 7.4. Verification rules

It turned out that PrB2 and PV R are sufficient to do the verification of the ABP. Of course,
here we mean about possible directions for this verification: still we cannot talk about a completely
formal proof, since we do not have a formally developed theory that can provide a formal proof.
Basically, we lack a definition of an appropriate equivalence relation that will constitute a model
or our rules. The equivalence relation we have in mind should be an extension f the probabilistic
branching bisimulation relation defined in Chapter refchapterabstraction. In [100], the author defines
a weak probabilistic bisimulation that relates the kind of processes we have talked bout. Even more, in
[32] the authors propose an axiom system for a weak probabilistic bisimulation and one of the axioms
coincides with PrB2 axiom. However, this definition of weak bisimulation does not elate processes
we discussed in Chapter 6. We believe hat the weak probabilistic bisimulations in [100, 32] are good
points to explore, in order to obtain an equivalence relation that is an extension of the bisimulation
defined in Chapter 6 and at the same time it makes a model for the axiom PrB2 and the rule PV R.

Chapter 8

Conclusion

This chapter is an overview of the contributions of this thesis. In more details we explain our achieve-
ments shortly discussed in Chapter 1 and give several directions and ideas for future work.

8.1 Achievements

The objective of this thesis is to introduce a probabilistic version of ACP where non-determinism and
probability co-exist. In Chapter 3 and 4 the presented probabilistic process algebra pACP+ improves
the variant of probabilistic process algebra proposed in [8]. In order to get a more effective axiom
system we have proposed a new variant of an extension of pBPA with parallel composition. Follow-
ing the idea of ACP-like process algebras for the interleaving model we have given the axiom system
where only parallel dynamic processes are merged. In order to realise this concept we have added
an extra quaternary operator,]||[called merge with memory. The operational semantics of pACP+

is based on the alternating model of Hansson [71] and it has been defined by a term deduction sys-
tem. The signature of this system contains an extended set of constants (each atomic action has a
dynamic counterpart) and its deduction rules include two transition types: probabilistic and action
transitions. Instead of labelling probabilistic transitions we have defined the probability distribution
function which gives a probability with which a probabilistic transition may occur. In the construc-
tion of the term models we have used probabilistic bisimulation and we have shown soundness and
completeness of the term model with respect to the proposed axiom systems. pACP+ is a theory for
structured specification of probabilistic systems. We give an example in Chapter 7 where we discuss
the PAR protocol with unreliable channels. Here we also discuss the possibility to extend our theory
with the priority operator needed for the verification of the protocol. The main contribution of this
part is a new method for description of probabilistic systems that keeps the flexibility of ACP and can
be extended with new features if it is necessary.

In Chapter 5 we have introduced time in the probabilistic theories from the previous two chapters.
Timing is introduced in the discrete-time manner which basically is modelled by the time unit delay
operator. We distinguish between two types of processes: processes that have to start their execution
in the same time slice they are initialized and processes that can delay their activities for an arbitrary
number of time slices. For the time extension of the basic process algebra from Chapter 3 no addi-
tional operators were needed apart from the operators that are used for the discrete time extension
of ACP. But in order to model a time variant of the asynchronous parallel composition as defined in
Chapter 4 a new operator has been inevitable. This operator is necessary for maintaining time consis-
tency. For the discrete time algebras we have defined operational semantics and probabilistic timed

241

242 Chapter 8. Conclusions

bisimulation. We proved soundness and completeness results. The main contribution of this part is
a new method that is suitable for describing quantitative and qualitative behaviour of probabilistic
timed systems.

In the thesis we also presented a version of fully probabilistic process algebra with abstraction
which contains, in addition to the axioms for the basic operators, a set of verification rules. These
rules tie in successfully the idea of abstraction in process algebra with the results from discrete time
Markov chain analysis. Furthermore, we proposed a probabilistic branching bisimulation relation
which corresponds to this process algebra in the sense that it gives a model for it. In such a way we
obtain a model for the verification rules. We provide several examples of probabilistic processes that
are related by our bisimulation but are not related by any other existing weak or branching bisimula-
tion. We show that the branching bisimulation can be decided in polynomial time with respect to the
number of states of the considered system.

In Chapter 7 we could prove the correctness of the PAR protocol by combining the methods pre-
sented earlier. Actually we reduced the process expression for the parallel composition of the protocol
components to an expression of a fully probabilistic process on which the verification technique from
Chapter 6 has been applied.

8.2 Future research
We believe that the specification methods we have proposed are powerful enough to model a broad
class of probabilistic system behaviours. However, there are many aspects that have to be considered
regarding the algebraic verification techniques for probabilistic systems.

In Section 7.4 we have mentioned that one of the main directions of our future interest is the
extension of the probabilistic branching bisimulation defined in Chapter 6 to the class of probabilistic
processes with non-determinism. The main aspect in our definition is that not every state has to be
considered but only those states that are entered after an observable action or the states from one
equivalence class that are first entered from a state from some other equivalence class. Thus, some
states that cannot be observed do not have to be related since they are only involved when probability
distributions for observable states - entries - are composed.

The new extended definition should also be based on the notion of entries. Besides, a “big inter-
nal” transition consisting of a sequence of internal transitions between states of the same equivalence
class should be defined that takes non-determinism into account. Clearly, it is desirable for such a
bisimulation to be compositional. We have realized that branching bisimulation taken as the underly-
ing concept can be too strong in the sense that no probabilistic branching bisimulation that preserves
the parallel composition operator can be defined. Thus we believe that the underlying equivalence
relation should be weaker than branching bisimulation, e.g. as the relations described in [57].

While sufficient verification rules have been proposed for the standard ACP-like process algebras,
this is not the case with its time extensions. The attempt to define a timed variant of KFAR rules
in [44] was unsuccessful. But in the recent paper [23] new verification rules and an equivalence
relation for timed systems have been proposed. This may open another prospect in the research of
verification of probabilistic timed systems. Therefore, combining the approach in [23] together with
our probabilistic approach with its possible extension with non-determinism should be investigated.

List of axioms

x+ y = y + x A1
(x+ y) + z = x + (y + z) A2
x+ x = x A3
a+ a = a AA3
a+ a = a DRTAA3

(x+ y) · z = x · z + y · z A4
(x · y) · z = x · (y · z) A5

x ‖ y = x‖ y + y‖ x+ x | y CM1
a‖ x = a · x CM2
a · x‖ y = a · (x ‖ y) CM3
(x+ y)‖ z = x‖ z + y‖ z CM4

a | b = γ(a, b) CF
a | b · x = (a | b) · x CM5
a · x | b = (a | b) · x CM6
a · x | b · y = (a | b) · (x ‖ y) CM7
(x+ y) | z = x | z + y | z CM8
z | (x + y) = z | x+ z | y CM9

∂H(a) = a if a /∈ H D1
∂H(a) = δ if a ∈ H D2
∂H(x + y) = ∂H(x) + ∂H(y) D3
∂H(x · y) = ∂H(x) · ∂H(y) D4

Πn(a) = a PR1
Π1(a · x) = a PR2
Πn+1(a · x) = a · Πn(x) PR3
Πn(x+ y) = Πn(x) + Πn(y) PR4

τI(a) = a if a /∈ I T I1
τI(a) = τ if a ∈ I T I2
τI(x+ y) = τI(x) + τI(y) TI3
τI(x · y) = τI(x) · τI(y) TI4
x · τ = x B1
x · (τ · (y + z) + y) = x · (y + z) B2

243

244 List of axioms

σrel(x) + σrel(y) = σrel(x + y) DRT1
σrel(x) · y = σrel(x · y) DRT2
x+ δ = x DRT3
δ · x = δ DRT4
νrel(a) = a DCS1

νrel(x + y) = νrel(x) + νrel(y) DCS2
νrel(x · y) = νrel(x) · y DCS3
νrel(σrel(x)) = δ DCS4

a | b = γ(a, b) DRTCF

a | b · x = (a | b) · x DRTCM2
a · x | b = (a | b) · x DRTCM3
a · x | b · y = (a | b) · (x ‖ y) DRTCM4
σrel(x) | νrel(y) = δ DRTCM5
νrel(x) |σrel(y) = δ DRTCM6
σrel(x) |σrel(y) = σrel(x | y) DRTCM7

a‖ x = a · x DRTM2
a · x‖ y = a · (x ‖ y) DRTM3
(x+ y)‖ z = x‖ z + y‖ z DRTM4
σrel(x)‖ νrel(y) = δ DRTM5
σrel(x)‖ (νrel(y) + σrel(z)) = σrel(x‖ z) DRTM6
∂H(a) = a if a /∈ H DRTD1
∂H(a) = δ if a ∈ H DRTD2

∂H(σrel(x)) = σrel(∂H(x)) DRTD5

x tπy = y t1−πx PrAC1
x tπ(y tρz) = (x t π

π+ρ−πρ
y) tπ+ρ−πρz PrAC2

x tπx = x PrAC3
(x tπy) · z = x · z tπy · z PrAC4
(x tπy) + z = (x + z) tπ(y + z) PrAC5
Πn(x tρy) = Πn(x) tρΠn(y) prPR

x ‖ y = (x, x)]||[(y, y) PrMM1
(x tπx

′, z)]||[(y, w) = (x, z)]||[(y, w) tπ(x′, z)]||[(y, w) PrMM2
(x, z)]||[(y tπy

′, w) = (x, z)]||[(y, w) tπ(x, z)]||[(y′, w) PrMM3
(x tπy)‖ z = x‖ z tπy‖ z PrCM1
(x tπy) | z = x | z tπy | z PrCM2
x | (y tπz) = x | y tπx | z PrCM3
∂H(x tπy) = ∂H(x) tπ∂H(y) PrD5
σrel(x tπy) = σrel(x) tπσrel(y) PrDRT1
νrel(x tπy) = νrel(x) tπνrel(y) PrDCS1

List of axioms 245

σrel(x)‖ (νrel(y) tπz) = σrel(x)‖ z PrDRTM7
σrel(x)‖ ((νrel(y) + σrel(z)) tπw) = σrel(x)‖ (σrel(z) tπw) PrDRTM8

x = x + x, y = y + y ⇒ (x, z)]||[(y, w) = x‖ w + y‖ z + x | y PrMM4

z = z + z ⇒ (x + y) | z = x | z + y | z PrCM4

z = z + z ⇒ z | (x+ y) = z |x + z | y PrCM5

a = a+ σrel(a) RSPDA1

y = a+ σrel(y)⇒ y = a RSPDA2

y = a · x + σrel(y)⇒ y = a · x RSPDA3
z = z + z & y = a + νrel(z) + σrel(y) & y1 = νrel(z) + σrel(y1)⇒ RSPDA4
y = a+ y1

z = z + z & y = a · x + νrel(z) + σrel(y) & y1 = νrel(z) + σrel(y1)⇒ RSPDA5
y = a · x+ y1

x′′ = x′′ + x′′, y′′ = y′′ + y′′ ⇒ PrDRTMM4
(νrel(x

′) + σrel(x
′′), z)]||[(νrel(y

′) + σrel(y
′′), w) =

(νrel(x
′), z)]||[(νrel(y

′), w)) +
(

σrel(x
′′)‖ w + σrel(y

′′)‖ z + σrel(x
′′) |σrel(y

′′)
)

x = x + x, y = y + y ⇒ PrDRTMM5
(νrel(x), z)]||[(νrel(y), w) = νrel(x)‖ w + νrel(y)‖ z + νrel(x) | νrel(y)

(νrel(x) + σrel(x
′), z)]||[(νrel(y), w) = PrDRTMM6

(νrel(x), z)]||[(νrel(y), w) + σrel(x
′)‖ w

(νrel(x), z)]||[(νrel(y) + σrel(y
′), w) = PrDRTMM7

(νrel(x), z)]||[(νrel(y), w) + σrel(y
′)‖ w

σ(νrel(x)) = δ PrRN1
σ(νrel(x) + σrel(y)) = y PrRN2
σ(νrel(x) tπy) = σ(y) PrRN3
σ((νrel(x) + σrel(y)) tπz) = σ(σrel(y) tπz) PrRN4

y = y + y ⇒ x · (τ · (y + z) + y) = x · (y + z) PrB2

246 List of axioms

Summary

Every day we witness the fast development of the hardware and software technology. This, of course,
is the reason that new and more complex systems controlled by some kind of computational-based
devices become an unseparated part of our daily life. As more as the system complexity increases,
as more the reasoning about its correct behaviour becomes difficult. A variety of consequences may
occur as a result of a failure, ranging from simple annoying to life threatening ones. Thus for some
systems it is crucial that they exhibit a correct functioning. However, for systems with an extremely
complex construction it is almost impossible to give an absolute guarantee for their correctness. In
this case, it is still satisfactory to know that the possibility for a system to fail is low enough.

Formal methods have been developed for establishing correctness of computer systems. They
provide rigorous methods with which one can formally specify properties of a systems’s intended
behaviour, and also can check if the system conforms to that specification. In case of complex systems
we need a formal method that allows us to reason in compositional way, it provides us with techniques
that can be used to build larger systems from the composition of smaller ones. Process algebra carries
exactly this idea; it provides operators that allow to compose processes in order to obtain a more
complex process. Besides, every process algebra contains a set of axioms. Every axiom is an algebraic
equation that carries our intuition and insight in process behaviour, it expresses which two processes
behaviour we consider equal. In such a way, manipulation with processes becomes manipulation with
equations in the algebraic sense.

But, equations and operators do not have any meaning unless we place them in a certain real
“world” and match the terms of the process algebra with the entities of the real world. This step is
traditionally called “giving a semantic of the syntax”. The structure constructed in this way is called
a model of the considered process algebra. For every given process algebra we can construct an
infinite number of models, but only several of them are interesting for the purpose process algebra was
developed as a formal method. However, there is a tendency always to use so-called a bisimulation
model. In this thesis we propose several process algebras and construct their models based on the
notion of bisimulation.

Probabilities
When using traditional formal methods to model a concurrent system designers are mostly interested
in the functional behaviour of that system. But in real-life systems not only functionality but also
quantitative aspects of the system behaviour are important. Even more due to the physical imple-
mentation of the system and its interaction with the environment one cannot expect a perfect system
without a possibility to fail. Naturally, the designer wants to be certain that the probability for this to
happen is sufficiently small.

In this thesis we turn our attention to probabilistic phenomena and propose methods for specify-
ing and verifying systems that exhibit probabilistic behaviour - probabilistic systems. Probabilistic

247

248 Summary

behaviour of processes in the framework of process algebra is captured by an operator, called proba-
bilistic choice operator. This operator allows the explicit specification of probabilistic aspects in a way
that it expresses (quantitatively) a probability distribution over a set of possible events/behaviours.

In this thesis we focus on two instances where probabilistic aspects have to be considered.
First, in the case of an unreliable system where the whole system or some of its components

are subject to failure. Usually, failures of system (components) are probabilistic in nature or can be
approximated y some probabilistic process and clearly in these cases probabilities should be used for
the sake of obtaining a more accurate model of the system. In Chapter 3 and Chapter 4 we propose a
process algebra that can be used for specification of concurrent processes with probabilistic behaviour.
Traditional results in process algebra such as congruence, elimination, soundness and completeness
are studied.

The second application of probabilities is that they can be used to model fairness. In the presence
of probabilities, a fairness assumption for probabilistic choice is superfluous as it is implicitly ex-
presses by assigning non-zero probabilities to every alternative in the probabilistic choice. In Chapter
6 we investigate the following scenario: if a system can executes an external action with a non-zero
probability, then abstraction from internal steps will yield the external step with probability 1 after a
sequence of finitely many internal steps. In case of more possible external activities, the behaviour of
the process, after the internal cycle is left, is governed by a probability distribution function. Using
the concept of absorption probabilities from discrete time Markov chain theory, we formulate several
algebraic verification rules applicable on fully probabilistic processes. The main contribution of this
part is the definition of a probabilistic branching bisimulation and the construction of a model for our
probabilistic process algebra with abstraction based on it. We also define an algorithm that decides
the probabilistic branching bisimulation.

Another quantitative aspect that should be taken into account when modelling a system behaviour
is time. Simultaneously introducing time and probability in formal methods provides a new aspect
to the specification and verification of (concurrent) systems. Certainly, it allows more accurate mod-
elling of time behaviour and unreliability which in standard methods usually are encoded by alter-
native composition. In Chapter 5 we consider discrete-time extensions of the probabilistic process
algebras defined in Chapter 3 and Chapter 4. Besides, we define a timed variant of the probabilistic
bisimulation and construct the bisimulation models of the discrete-time probabilistic process alge-
bras. Like for the untimed process algebras, we study results such as elimination, soundness and
completeness in the context of the timed process algebras.

In Chapter 7 we report three case studies analyzed by the methods defined in the previous chapters.
All three case studies are examples of communication protocols that use an unreliable channel. By the
last example we report several observations we have made regarding verification methods for process
that exhibit both probabilistic and non-deterministic behaviour. Here, mainly we discuss some ideas
left for further investigation.

Samenvatting

De ontwikkeling van software en hardware systemen is de afgelopen decennia in een stroomversnel-
ling geraakt. De steeds grotere beschikbaarheid van omvangrijke en complexe, computer gestuurde
systemen heeft tot gevolg dat we steeds afhankelijker worden van zulke systemen. Zoals veel hulp-
middelen, gemaakt door mensenhanden, kunnen dit soort systemen falen. Het falen van dergelijke
systemen heeft vaak gevolgen die in ernst kunnen variëren van vervelend tot levensbedreigend. Het
is daarom, zeker voor een klasse van systemen, van levensbelang dat ze correct functioneren. Voor
veel systemen geldt echter dat het bouwen ervan vaak extreem complex is; derhalve is een absolute
zekerheid op de correctheid van het gebouwde systeem niet altijd te geven. In deze gevallen is het
van belang om te weten dat de kans op falen klein genoeg is.

Voor het vaststellen van de correctheid van een computer systeem zijn verscheidene Formele Me-
thoden ontwikkeld. Deze stellen gebruikers in staat om op een precieze, eenduidige wijze vast te
leggen wat de gewenste eigenschappen van een systeem zijn. Bovendien is het vaak mogelijk om met
behulp van dit soort methoden vast te stellen dat een gegeven systeem aan een gewenste specificatie
voldoet, en dat gewenste eigenschappen daadwerkelijk aanwezig zijn. De grootte van complexe sys-
temen is echter in veel gevallen een belemmering voor dit soort beschrijvingen en analyses. Daarom
is het noodzakelijk dat de methode gebruikers in staat stelt om systemen op een compositionele wij-
ze te beschrijven en te analyseren. Met andere woorden, zulk soort methoden stellen gebruikers in
staat om grote, complexe systemen samen te stellen uit kleinere, behapbare systemen. Proces algebra
is een van de formele methoden die aan deze eisen beantwoord; de manier waarop complexe syste-
men kunnen worden samengesteld uit kleinere systemen is door middel van (wiskundige) operatoren.
Kenmerkend voor een proces algebra zijn de axioma’s die in vergelijkingen de intuı̈tie achter het sa-
menspel van systeemgedragingen en operatoren vastleggen. Op die manier beschrijft het eenduidig
welke systemen we equivalent kunnen beschouwen. Deze vergelijkingen stellen ons bovendien in
staan om te rekenen aan systemen op een algebraı̈sche wijze.

Vergelijkingen en operatoren zijn echter weinig zinvol als we niet precies begrijpen wat we ermee
bedoelen. Derhalve is het noodzakelijk om termen van de proces algebra te relateren aan entiteiten uit
de echte wereld. Het vastleggen van deze relaties staat bekend als het geven van een semantiek aan
de syntaxis. De objecten uit de echte wereld vormen een zogenaamd model voor een proces algebra.
Voor elke proces algebra kan in wezen een oneindige hoeveelheid modellen gegeven worden; echter,
maar enkele modellen hiervan zijn interessant, daar de meerderheid van de modellen het idee achter
de proces algebra niet juist vertegenwoordigt. Een veelgebruikt model is het zogenaamde bisimulatie
model. De in dit proefschrift bestudeerde proces algebras worden allen voorzien van een model dat
gestoeld is op bisimulatie.

249

250 Samenvatting

Kansen

Bij het gebruik van traditionele formele methoden om systemen te beschrijven is men vaak beperkt tot
het het beschrijven en analyseren van het functionele gedrag van dat systeem. De realiteit leert echter
dat kwantitatieve eigenschappen van een systeem vaak minstens zo belangrijk zijn als het functionele
gedrag van een systeem. Door de vaak imperfecte omgeving waarmee een systeem interacties heeft
en waarin een systeem dient te functioneren, kan men een foutloos functioneren van een systeem
redelijkerwijs niet verwachten. Een gedegen inzicht in de kans op het falen van een systeem is vaak
van groot belang voor zowel de ontwerper als voor gebruikers van een systeem. Door het meenemen
van kwantitatieve informatie over de omgeving alsmede over het systeem zelf in de beschrijving van
een systeem is een ontwerper in staat om betere inschattingen te maken in het functioneren van een
systeem.

In dit proefschrift bestuderen we het fenomeen van kansen. We stellen methoden voor die ge-
bruikers in staat stellen om een systeem waarin kans een rol speelt — zogenaamde probabilistische
systemen — te beschrijven en te verifiëren. In de proces algebra wordt het probabilistische gedrag van
een systeem beschreven middels een operator, genaamd probabilistische keuze. Deze operator stelt
gebruikers in staat om (kwantitatieve) kans distributies te koppelen aan een verzameling mogelijke
systeemgedragingen.

In dit proefschrift bestuderen we twee instanties waarin probabilistische aspecten moeten worden
beschouwd. Een gebruik van kansen is in het modelleren van onbetrouwbare (mogelijk parallelle)
systemen. Het falen van een dergelijke systeem is vaak terug te voeren op (de kans op) het falen
van een of meerdere deelcomponenten van het systeem. Het falen van componenten kan in veel
gevallen beschreven worden door het meenemen van kanstechnische informatie over het gedrag; het
algehele systeem falen is daarmee vaak eveneens kanstechnisch te beschrijven. Een functionele en
kwantitatieve beschrijving van een systeem en zijn componenten is derhalve wenselijk als het doel
is een zo natuurgetrouw beeld te krijgen van een systeem. De proces algebra die we beschrijven en
bestuderen in Hoofdstuk 3 en Hoofdstuk 4 kan gebruikt worden om zulke onbetrouwbare systemen
te beschrijven en analyseren. Met name bestuderen we in deze hoofdstukken de voor proces algebra
traditionele resultaten zoals congruentie, eliminatie, en volledigheid.

Het tweede gebruik van het toepassen van kansen dat we bestuderen in dit proefschrift omvat het
modelleren van fairness eigenschappen van een systeem. Door de aanwezigheid van kansen zijn aan-
names over fairness voor de probabilistische keuze overbodig. De fairness van een probabilistische
keuze volgt namelijk impliciet uit het toekennen van strikt positieve kansen aan ieder alternatief in
een probabilistische keuze. In Hoofdstuk 6 onderzoeken we het volgende scenario: als een systeem
een externe actie a met strikt positieve kans kan uitvoeren, dan zal door het abstraheren van interne
acties, de kans op de actie a na een eindig aantal interne acties, gelijk zijn aan 1. In het geval dat
meerdere externe acties mogelijk zijn, zal het verdere gedrag van het systeem, zodra de interne lus
verlaten wordt, bepaald worden door een kansdistributie functie. Gebruik makend van het concept
van absorbing probabilities, bekend uit de Markov chain theorie, zijn we in staat om verscheidene
algebraı̈sche verificatie regels te formuleren die ons in staat stellen om met abstractie in puur proba-
bilistische systemen te rekenen. De belangrijkste contributie van dit hoofdstuk is de definitie van een
probabilistic branching bisimulatie en de constructie van een model voor onze probabilistische proces
algebra met abstractie. Bovendien tonen we aan dat de probabilistic branching bisimulatie beslisbaar
is en definieren we hiervoor een algoritme.

Kansen vormen niet de enige kwantitatieve aspecten van een systeem. Het verstrijken van tijd
is een belangrijk ander kwantitatief aspect dat veelal het gedrag van een systeem kan beı̈nvloeden.
Een systeembeschrijving waarin zowel de kanstechnische informatie alsmede de tijdsafhankelijkhe-

Samenvatting 251

den zijn opgenomen stelt een ontwerper in staat om de invloed van beide aspecten op het systeem en
op elkaar grondig te analyseren. In Hoofdstuk 5 beschouwen we een discrete-tijd uitbreiding van de
probabilistische proces algebras die we in Hoofdstuk 3 en Hoofdstuk 4 reeds eerder hebben gedefini-
eerd. De toevoeging van tijd als concept aan onze proces algebras heeft tot gevolg dat een aanpassing
van het bisimulatie model van de oorspronkelijke probabilistische proces algebras aangepast dient
te worden. Daartoe definieren we een tijds-variant op de probabilistische bisimulatie en construeren
we het bisimulatie model voor de discrete-tijd probabilistische proces algebras. De resultaten die we
reeds eerder bestudeerden voor de probabilistische proces algebras, zoals eliminatie en volledigheid,
worden opnieuw bestudeerd voor de discrete-tijd probabilistische proces algebras.

Hoofdstuk 7 beschrijft, aan de hand van drie casussen, de toepassingen van de methoden die we
onderzocht en beschreven hebben in de voorgaande hoofdstukken. Alle beschreven casussen zijn
voorbeelden van communicatie protocollen waarbij gebruik wordt gemaakt van een onbetrouwbaar
kanaal. Bij het laatste voorbeeld gaan we dieper in op diverse observaties die we maken met betrek-
king tot methoden voor het verifiëren van systemen die zowel probabilistisch als non-deterministisch
gedrag vertonen. De ideeën die hier beschreven staan zijn suggesties voor verder onderzoek.

252 Samenvatting

Bibliography

[1] L. Aceto, W. Fokkink, C. Verhoef, Conservative extension in structural operational seman-
tics, In Current Trends in Theoretical Computer Science - Entering the 21st Century, World
Scientific, G. Paun, G. Rozenberg, A. Salomaa eds., pp. 504-524, 2001.

[2] L. Aceto, W. Fokkink, C. Verhoef, Structural operational semantics, In [38], pp. 197-292,
2001.

[3] L. Aceto, Z. Ésik, A. Ingólfsdóttir, Equational axioms for probabilistic bisimilarity, Proc, of the
9th International Conference on Algebraic Methodology And Software Technology, AMAST
’2002, St. Gilles les Bains, Reunion Island, France. Lecture Notes in Computer Science 2422,
pp. 239-253, 2002. Also appears as technical report BRICS RS-02-6, 2002.

[4] A. Aho, J. Hopcroft, J. Ullman, The design and analysis of computer algorithms, Addison-
Wesley Publishing Company, 1974.

[5] A. Aldini, R. Gorrieri, Security analysis of a probabilistic non-repudiation protocol, Proc. of
the 2nd Joint Int. Workshop on Process Algebra and Performance Modelling, Probabilistic
Methods in Verification (PAPM-PROBMIV’02), H. Hermanns, R. Segala eds., Springer LNCS
2399, pp. 17-36, Copenhagen, Denmark, July 2002

[6] S. Andova, Vremenski procesni algebri, MSc. thesis, University “Sts. Cyril and Methodious”,
Institute of Informatics, 1997.

[7] S. Andova, Process algebra with probabilistic choice (extended abstract), Proc. 5th Inter-
national AMAST Workshop, ARTS’99, Bamberg, Germany, J.-P. Katoen, ed., LNCS 1601,
Springer-Verlag, pp. 111-129, 1999. (Full version report CSR 99-12, Eindhoven University of
Technology, 1999.)

[8] S. Andova, Process algebra with interleaving probabilistic parallel composition, Eindhoven
University of Technology, CSR 99-04, 1999.

[9] S. Andova, Process algebra with time and probabilities, Proc. of International Conference on
Algebraic Methodology and Software Technology (AMAST’00), Iowa City, USA, T. Rus, ed.,
LNCS 1816, Springer-Verlag, pp.323-338, 2000.

[10] S. Andova, J. C. M. Baeten Abstraction in probabilistic process algebra, Proc. Tools and Al-
gorithms for the Construction and Analysis of Systems, 7th International Conference, TACAS
2001 Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2001 Genova, Italy, T. Margaria, Wang Yi, eds., LNCS 2031 Springer Verlag, pp.
204-219, 2001.

253

254 Chapter 8. Bibliography

[11] S. Andova, J. C. M. Baeten Alternative composition does not imply non-determinism, Bulletin
of the European Association for Theoretical Computer Science 76, EATCS, pp. 125-127, Feb.
2002.

[12] J. C. M. Baeten, J. A. Bergstra, J. W. Klop, Syntax and defining equations for and interrupt
mechanism in process algebra, Fundamenta Informaticæ, IX(2):127-168, 1986.

[13] J. C. M. Baeten, J. A. Bergstra, J. W. Klop, On the consistency of Koomen’s fair abstraction
rule, Theor. Comp. Sci. 51, pp.129-176, 1987.

[14] J. C. M. Baeten, R. J. van Glabbeek, Merge and termination in process algebra, Proc. of Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS), Pune, India,
K.V. Nori, ed., LNCS 287, Springer-Verlag, pp.153-172, 1987.

[15] J. C. M. Baeten, J. A. Bergstra, Global renaming operators in concrete process algebra, Infor-
mation and Computation 78, pp. 205-245, 1988.

[16] J. C. M. Baeten, J. A. Bergstra, Real time process algebra, Formal Aspects of Computing,
3(2):142-188, 1991.

[17] J. C. M. Baeten, J. A. Bergstra, S. A. Smolka, Axiomatizing probabilistic processes: ACP with
generative probabilities, Information and Computation 121(2), pp. 234-255, Sep. 1995.

[18] J. C. M. Baeten, J. A. Bergstra, Process algebra with partial choice, Proc. CONCUR ’94,
Uppsala, B. Jonsson & J. Parrow, eds., LNCS 836, Springer Verlag, pp. 465-480, 1994.

[19] J. C. M. Baeten, J. A. Bergstra, Discrete time process algebra, Formal Aspects of Computing,
8(2):188-208, 1996.

[20] J. C. M. Baeten, J. A. Bergstra, Discrete time process algebra: Absolute time, relative time and
parametric time, Fundamenta Informaticæ, 29(1,2):51-76, 1997.

[21] J. C. M. Baeten, R. van Glabbeek, Another look at abstraction in process algebra, Proc.
ICALP’87, Karlsruhe, Th. Ottman ed., LNCS 267, Springer Verlag, pp. 84-94, 1987.

[22] J. C. M. Baeten, C. A. Middelburg, Process algebra with timing: Real time and discrete time,
Eindhoven University of Technology, CSR 99-11, 1999. In J.A. Bergstra, A. Ponse and S.A.
Smolka, eds., Handbook of Process Algebra, Elsevier, 2001.

[23] J. C. M. Baeten, C. A. Middelburg, M. A. Reniers, A new equivalence for processes with timing
– with an application to protocol verification, Eindhoven University of Technology, CSR 2002.

[24] J. C. M. Baeten, C. A. Middelburg, Process algebra with timing, EATCS Monographs Series,
Springer-Verlag, 2002.

[25] J. C. M. Baeten, J. J. Vereijken, Discrete time process algebra with empty process, Techni-
cal report CSR 97/05, Eindhoven University of Technology, Computing Science Department,
1997.

[26] J. C. M. Baeten, C. Verhoef, Concrete process algebra, In: Handbook of logic in computer
science , S. Abramsky, D.M. Gabbay, T.S.E. Maibaum, eds., Vol. 4, Syntactical Methods,
Chapter 2, Oxford University Press 1995, pp. 149 - 268.

Chapter 8. Bibliography 255

[27] J.C.M. Baeten, W. P. Weijland, Process algebra, Cambridge University Press, 1990.

[28] C. Baier, On algorithmic verification methods for probabilistic systems, Habilitation thesis,
Univ. Mannheim, 1998.

[29] C. Baier, H. Hermanns, Weak bisimulation for fully probabilistic processes, Proc. CAV’97, O.
Grumberg, ed., LNCS 1254, pp. 119-130, 1997.

[30] C. Baier, M. Stoelinga, Norm functions for probabilistic bisimulations with delays, Proc. FOS-
SACS’00, J. Tiuryn, ed., Berlin, Germany, LNCS 1784, Springer Verlag, pp. 1-16, 2000.

[31] J. W. de Bakker, J. I. Zucker, Processes and the denotational semantics of concurrency, Infor-
mation and Control 54(1/2), pp. 70-120, 1982.

[32] E. Bandini, R. Segala, Axiomatizations for probabilistic bisimulation, Proc. ICALP’01, F. Ore-
jas, P.G. Spirakis, J. van Leeuwen, eds., Crete, Greece, LNCS 2076, Springer Verlag, pp.
370-381, 2001.

[33] J. A. Bergstra, Put and gets, primitives for synchronous unreliable message passing, Rep.
LGPS3, Department of Philosophy, University of Utrecht, 1985.

[34] J. A. Bergstra, J. W. Klop, Process algebra for synchronous communication, Information and
Control 60, pp. 109-137, 1984.

[35] J. A. Bergstra, J. W. Klop, The algebra of recessively defined processes and the algebra of reg-
ular processes, Proc. 11th ICALP, Antwerpen, J. Paredaens ed., LNCS 172, Springer Verlag,
pp. 82-95, 1984.

[36] J. A. Bergstra, J. W. Klop, Algebra of communicating processes with abstraction, Theoret.
Comput. Sci., 37(1), pp. 77-121, 1985.

[37] J. A. Bergstra, J. W. Klop, Verification of an alternating bit protocol by means of process alge-
bra, Mathematical Methods of Specification and Synthesis of Software Systems ’85, W. Bibel
and K.P.Jantke, eds., Mathematical research 31, Akademie-Verlag, Berlin, pp. 8-23, 1986.

[38] J. A. Bergstra, A. Ponse, S. Smolka, eds, Handbook of process algebra, North-Holland, 2000.

[39] M. Bernardo, R. Gorrieri, A tutorial on EMPA: A theory of concurrent processes with non-
determinism, priorities, probabilities and time, Theoretical Computer Science, 202(1-2):1-54,
1998.

[40] M. Bernardo, Theory and application of extended Markovian process algebra, Ph.D. thesis,
Dottorato di Ricerca in Informatica, Università di Bologna, Padova, Venezia, 1999.

[41] S. L. Bloom, Z. Ésik, Iteration theories, Springer-Verlag, Berlin, 1993.

[42] S. H. J. Bos, M. A. Reniers, The I2C-bus in discrete-time process algebra, Science of Com-
puter Programming, 29(1-2):235-285, 1997.

[43] R. Bol, J. F. Groote, The meaning of negative premises in transition system specification, In
Journal of the ACM, 43(5):863-914, 1996.

[44] D. Bošnački, PAR protocol in discrete time process algebra, unpublished paper, 1996.

256 Chapter 8. Bibliography

[45] M. Bravetti, R. Gorrieri The theory of interactive generalized semi-Markov processes, Theo-
retical Computer Science, 286, 2002.

[46] E. Brinksma, H. Hermanns, J.-P. Katoen eds. Lectures on formal methods and performance
analysis, First EEF/Euro Summer School on Trends in Computer Science, LNCS 2090, Berg
en Dal, The Netherlands, 2000.

[47] Dagstuhl seminar, Probabilistic methods in verification, Schloss Dagstuhl, Germany,
http://www.cs.bham.ac.uk/˜mzk/Dagstuhl, 2000.

[48] P.R. D’Argenio, C. Verhoef, A general conservative extension theorem in process algebra with
inequalities, Theoretical Computer Science 177, pp. 351-380, 1997.

[49] P.R. D’Argenio, H. Hermanns, J.-P. Katoen, On generative parallel composition, Proc. of
Workshop on Probabilistic Methods in Verification, (PROBMIV’98), Indianapolis, USA, C.
Baier & M. Huth & M Kwiatkowska & M. Ryan ed., ENTCS 22, pp. 105-121, 1998.

[50] P.R. D’Argenio, Algebras and automata for timed and stochastic systems, Ph.D. Thesis, Uni-
versity of Twente, 1999.

[51] E. W. Dijkstra, A discipline of programming, Prentice-Hall, 1976.

[52] R. W. Floyd, Assigning meanings to programs, Proc. of Symposia in Applied Mathematics:
Mathematical Aspects of Computer Science, vol. 19, pp. 19-31, 1967.

[53] W. Fokkink, Introduction to process algebra, Springer-Verlag, 2000.

[54] A. Giacalone, C. Jou, S. A. Smolka Algebraic reasoning for probabilistic concurrent systems,
Proc. IFIP TC2 Working conference on Programming Concepts and Methods, M. Broy, C. B.
Jones, eds., Sea of Galilee, Israel, pg. 443-458, North-Holland, 1990

[55] R. J. van Glabbeek, Comparative concurrency semantics, with refinement of actions, Ph.D.
Thesis, Free University, Amsterdam, 1990.

[56] R. J. van Glabbeek, S. A. Smolka, B. Steffen, C. M. N. Tofts, Reactive, generative and stratified
models of probabilistic processes, Proc. of 5th Annual IEEE Symp. on Logic in Computer
Science, Philadelphia, PA, pp. 130-141, 1990.

[57] R. J. van Glabbeek, The linear time - branching time spectrum II (the semantics of sequential
systems with silent moves), Extended abstract in: Proc. CONCUR ’93, Hildesheim, Germany,
E. Best, ed., LNCS 715, Springer-Verlag, 1993, pp. 66-81

[58] R. J. van Glabbeek, What is branching time semantics and why to use it?, The Concurrency
Column, M. Nielsen, ed., Bulletin of the EATCS 53, pp. 190-198, June, 1994.

[59] R. J. van Glabbeek, P. Weijland, Branching time and abstraction in bisimulation semantics,
JACM, 43(3): 555-600, 1996.

[60] R. J. van Glabbeek, The meaning of negative premises in transition system specification II,
in: Automata, Languages and Programming, Proc. 23th International Colloquium, ICALP’96,
Paderborn, Germany, F. Meyer auf der Heide, B. Monien eds., LNCS 1099, Springer Verlag,
pp. 502-513, 1996.

Chapter 8. Bibliography 257

[61] R. J. van Glabbeek, The linear time - branching time spectrum I, in [38], pp. 3-99.

[62] N. Götz, U. Herzog, M. Rettelbach, Multiprocessor and distributed system design: The inte-
gration of functional specification and performance analysis using stochastic process algebras,
Performance Evaluation of Computer and Communication Systems, L. Donatiello and R. Nel-
son eds., LNCS 729, pp. 121-146, Springer Verlag, 1993.

[63] W.O.D. Griffioen, F. Vaandrager, Normed simulation, Proc. CAV’98, Vancouver, BC, Canada,
A.J. Hu, M.Y. Vardi eds., LNCS 1427, pp. 332-344, Springer Verlag, 1998.

[64] J.F. Groote, F. Vaandrager, An efficient algorithm for branching bisimulation and stuttering
equivalence, Proc. ICALP’90, LNCS 443, M.S. Paterson, ed., Warwick, England, pp. 626-
638, 1990.

[65] J. F. Groote, Process algebra and structured operational semantics, Ph.D. thesis, University of
Amsterdam, 1991.

[66] J. F. Groote, J.J. van Wamel, Analysis of three hybrid systems in timed µCRL, Science of
Computer Programming 39:215-247, 2001. Also available as Technical Report SEN-R9815,
CWI, Amsterdam, 1998.

[67] R.L. Grossman, A. Nerode, A. Ravn, H. Rischel, editors, Hybrid Systems, LNCS 736, Springer-
Verlag, 1993.

[68] P. Halmos, Measure theory, Springer Verlag, 1950.

[69] H. Hansson, B. Jonsson, A framework for reasoning about time and reliability, Proc. 10-th
IEEE Real-Time Systems Symposium, IEEE Computer Society Press, 1989.

[70] H. Hansson, B. Jonsson, A calculus for communicating systems with time and probabilities,
Proc. IEEE Real-Time Systems Symposium, IEEE Computer Society Press, pp 278-287, 1990.

[71] H. Hansson, Time and probability in formal design of distributed systems, Ph.D. thesis, DoCS
91/27, University of Uppsala, 1991.

[72] J. I. den Hartog, E. P. de Vink, Mixing up nondeterminism and probability, A preliminary re-
port, Proc. LICS’98 workshop on Probabilistic Methods in Verification, C. Baier, M. Huth, M.
Kwiatkowska, M. Ryan (eds.), ENTCS 22, 1998. (Full version report IR-449, Vrije Univer-
siteit, Amsterdam, 1998.)

[73] J. I. den Hartog, Probabilistic extensions of semantical models, Ph.D. thesis, Vrije Universiteit,
October 2002.

[74] H. Hermanns, Interactive Markov chains, Ph.D. thesis, University of Erlangen-Nu̇rnberg, 1998.

[75] J. Hillston, A compositional approach to performance modelling, Distinguished Dissertation
in Computer Science, Cambridge University Press, 1996.

[76] C. A. R. Hoare, An axiomatic basis for computer programming, Communications of the ACM
12:576-580, 1969.

[77] C. A. R. Hoare, Communicating sequential processes, Communications of the ACM 21(8):666-
677, 1978.

258 Chapter 8. Bibliography

[78] C. A. R. Hoare, Communicating sequential processes, International Series in Computer Sci-
ence, Prentice Hall, 1985.

[79] R.A. Howard, Dynamic probabilistic systems, New York, Wiley, 1971.

[80] C.-C. Jou, Aspects of probabilistic process algebra, Ph.D.Thesis, State University of New York
at Stony Brook, 1990.

[81] C.-C. Jou, S. A. Smolka Equivalences, congruences and complete axiomatizations for proba-
bilistic processes, Proc. CONCUR ’90, LNCS 458, J.C.M. Baeten, J. W. Klop, eds. Springer
Verlag, Amsterdam, pp. 367-383, 1990.

[82] J. G. Kemeny, L. J. Snell Finite Markov chains, Springer Verlag, 1976.

[83] J. W. Klop Term rewriting systems, in Handbook of Logic and Computer Science, vol. 2:
“Background:Computational Structures”, Oxford University Press, S. Abramsky, D. M. Gab-
bay, T. S. E. Maibaum eds., pp. 1-116, 1992.

[84] J. L. M. Vrancken, The algebra of communicating processes with empty process, Theoretical
Computer Science, 177(2):287-328, 1997.

[85] V. Kulkarni, Modeling and Analysis of Stochastic Systems, Chapman & Hall, 1995.

[86] K. G. Larsen, A.Skou, Bisimulation through probabilistic testing, Information and Computa-
tion, 94:1-28, 1991.

[87] N. Lopez, M. Núñez, NMSPA: A non-Markovian model for stochastic processes, Proc. of 1st
Int. Workshop on Distributed System Validation and Verification, IEEE CS Press, 2000.

[88] N. Lynch, F. Vaandrager, Forward and backward simulations, II: timing-based systems, Infor-
mation and Computation 128(1): 1-25 (1996)

[89] R. Milner, A calculus of communicating systems, LNCS 92, Springer, 1980.

[90] R. Milner, A modal characterisation of observable machine-behaviour, CAAP’81, G. Aste-
siano, C. Böhm, eds., LNCS 112, Springer Verlag, pp. 25-34, 1980.

[91] R. Milner, Calculi for synchrony and asynchrony, Theoretical Computer Science 25, pp. 267-
310, 1983.

[92] R. Milner, Communication and concurrency, International Series in Computer Science, Pren-
tice Hall, 1989.

[93] D. M. R. Park, Concurrency and automata on infinite sequences, 5th GI Conference, P.
Deussen, ed., LNCS 104, Springer, 1981.

[94] C. A. Petri, Introduction to general net theory, Proc. Advance Course on General Net Theory
of Processes and Systems, LNCS 84, 1980.

[95] A. Philippou, O. Sokolsky, I. Lee, Weak bisimulation for probabilistic systems, Proc. CON-
CUR’98, D. Sangiorgi, R. de Simone, eds., Nice, France, LNCS 1466, Springer Verlag, 1998.

Chapter 8. Bibliography 259

[96] G. D. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19, Com-
puter Science Department, Aarhus University, 1981.

[97] A. Pnueli, The temporal logic of programs, Proc. 18th IEEE Symposium Foundation of Com-
puter Science - FOCS, pg. 46-57, 1977.

[98] P. Panangaden, Does combining nondeterminism and probability make sense?, in Bulletin of
the EATCS 72, The Concurrency Column, pp. 182-189, October 2001.

[99] Y. A. Rozanov, Introductory probability theory, Prentice Hall, Englewood Cliffs, 1969.

[100] R. Segala, Modeling and verification of randomized distributed real-time systems, Ph.D. thesis,
Massachusetts Institute of Technology, 1995.

[101] R. Segala, N. A. Lynch, Probabilistic simulations for probabilistic processes, Nordic Journal
of Computing, 2(2):250-273,1995.

[102] E.W. Stark, S. A. Smolka, A complete axiom system for finite-state probabilistic processes, in
Proof, Language and Interaction: Essays in Honour of Robin Milner, Plotkin G., Stirling C.,
Tofte M. (eds.), MIT Press, Cambridge, MA, pp. 571-595,2000.

[103] M. Stoelinga, Alea jacta est: Verification of probabilistic, real-time and parametric systems,
Ph.D. thesis, Katholieke Universiteit Nijmegen, 2002.

[104] A. S. Tanenbaum, Computer networks, Prentice-Hall International, 1981.

[105] F. W. Vaandrager, Two simple protocols, In: Applications of Process algebra, Cambridge Uni-
versity Press, J.C.M. Baeten ed., pp. 23-44, 1990.

[106] M.Y. Vardi, Automatic verification of probabilistic concurrent finite state programs, Proc. of
26th Symp. on Foundations of Com. Sc., IEEE Comp. Soc. Press, pp. 327-338, 1985.

[107] C. Verhoef, A general conservative extension theorem in process algebra, Proc. of
PROCOMET’94, IFIP 2 Working Conference, San Miniato, E.-R. Olderog ed., pp. 149-168,
1994.

[108] J. J. Vereijken, Discrete-time process algebra, Ph.D. thesis, Eindhoven University of Technol-
ogy, 1997.

[109] J. van Wamel, Verification techniques for elementary data types and retransmission protocols,
Ph.D. thesis, University of Amsterdam, 1995.

[110] T.A.C. Willemse, A process algebraic approach to hybrid systems, PROGRESS 2000, Proc. of
Workshop on Embedded Systems, J.P. Veaen ed., pp. 165-170, 2000.

Titles in the IPA Dissertation Series
J.O. Blanco. The State Operator in Process Algebra. Fac-
ulty of Mathematics and Computing Science, TUE. 1996-
1

A.M. Geerling. Transformational Development of Data-
Parallel Algorithms. Faculty of Mathematics and Com-
puter Science, KUN. 1996-2

P.M. Achten. Interactive Functional Programs: Models,
Methods, and Implementation. Faculty of Mathematics
and Computer Science, KUN. 1996-3

M.G.A. Verhoeven. Parallel Local Search. Faculty of
Mathematics and Computing Science, TUE. 1996-4

M.H.G.K. Kesseler. The Implementation of Functional
Languages on Parallel Machines with Distrib. Memory.
Faculty of Mathematics and Computer Science, KUN.
1996-5

D. Alstein. Distributed Algorithms for Hard Real-Time
Systems. Faculty of Mathematics and Computing Science,
TUE. 1996-6

J.H. Hoepman. Communication, Synchronization, and
Fault-Tolerance. Faculty of Mathematics and Computer
Science, UvA. 1996-7

H. Doornbos. Reductivity Arguments and Program Con-
struction. Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-8

D. Turi. Functorial Operational Semantics and its De-
notational Dual. Faculty of Mathematics and Computer
Science, VUA. 1996-9

A.M.G. Peeters. Single-Rail Handshake Circuits. Faculty
of Mathematics and Computing Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering Specification
Formalism. Faculty of Mechanical Engineering, TUE.
1996-11

P. Severi de Santiago. Normalisation in Lambda Calcu-
lus and its Relation to Type Inference. Faculty of Mathe-
matics and Computing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and Partition Refine-
ment for Model Checking. Faculty of Mathematics and
Computing Science, TUE. 1996-13

M.M. Bonsangue. Topological Dualities in Semantics.
Faculty of Mathematics and Computer Science, VUA.
1996-14

B.L.E. de Fluiter. Algorithms for Graphs of Small
Treewidth. Faculty of Mathematics and Computer Sci-
ence, UU. 1997-01

W.T.M. Kars. Process-algebraic Transformations in
Context. Faculty of Computer Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data Types. Fac-
ulty of Mathematics and Computing Science, TUE. 1997-
03

T.D.L. Laan. The Evolution of Type Theory in Logic
and Mathematics. Faculty of Mathematics and Comput-
ing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Explicit Sub-
stitution. Faculty of Mathematics and Computing Science,
TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra. Faculty
of Mathematics and Computing Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional Approach to Syn-
tax and Typing. Faculty of Mathematics and Informatics,
KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing. Faculty
of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-Event Simula-
tor for Systems Engineering. Faculty of Mechanical Engi-
neering, TUE. 1998-02

J. Verriet. Scheduling with Communication for Multipro-
cessor Computation. Faculty of Mathematics and Com-
puter Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous Low-Power
80C51 Microcontroller. Faculty of Mathematics and
Computing Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: System Design with Petri
Nets and Process Algebra. Faculty of Mathematics and
Computing Science, TUE. 1998-05

E. Voermans. Inductive Datatypes with Laws and Sub-
typing – A Relational Model. Faculty of Mathematics and
Computing Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic Unification-based
Parsing. Faculty of Computer Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simulation of Surface
Processes. Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolutionary
Search. Faculty of Mathematics and Natural Sciences,
Univ. Leiden. 1999-04

E.I. Barakova. Learning Reliability: a Study on Indeci-
siveness in Sample Selection. Faculty of Mathematics and
Natural Sciences, RUG. 1999-05

M.P. Bodlaender. Schedulere Optimization in Real-Time
Distributed Databases. Faculty of Mathematics and Com-
puting Science, TUE. 1999-06

M.A. Reniers. Message Sequence Chart: Syntax and Se-
mantics. Faculty of Mathematics and Computing Science,
TUE. 1999-07

J.P. Warners. Nonlinear approaches to satisfiability prob-
lems. Faculty of Mathematics and Computing Science,
TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols with For-
mal Methods. Faculty of Computer Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata for Timed and
Stochastic Systems. Faculty of Computer Science, UT.
1999-10

G. Fábián. A Language and Simulator for Hybrid Sys-
tems. Faculty of Mechanical Engineering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts and Proof
Rules. Faculty of Mathematics and Computing Science,
TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural Prediction
System. Faculty of Mathematics and Natural Sciences,
RUG. 1999-13

J. Saraiva. A Purely Functional Implementation of At-
tribute Grammars. Faculty of Mathematics and Computer
Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Parallel
Progam Construction. Faculty of Mathematics and Com-
puting Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft in the
Dutch Republic. Faculty of Mathematics and Computer
Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified approach to
the verification of distributed algorithms. Faculty of Math-
ematics and Computer Science, UU. 2000-02

W. Mallon. Theories and Tools for the Design of Delay-
Insensitive Communicating Processes. Faculty of Mathe-
matics and Natural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer Aided Verification
of Protocols. Faculty of Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the MathSpad Editor.
Faculty of Mathematics and Computing Science, TUE.
2000-05

J. Fey. Design of a Fruit Juice Blending and Packaging
Plant. Faculty of Mechanical Engineering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving Correct Pro-
grams. Faculty of Mathematics and Computing Science,
TUE. 2000-07

P.A. Olivier. A Framework for Debugging Heterogeneous
Applications. Faculty of Natural Sciences, Mathematics
and Computer Science, UvA. 2000-08

E. Saaman. Another Formal Specification Language.
Faculty of Mathematics and Natural Sciences, RUG. 2000-
10

M. Jelasity. The Shape of Evolutionary Search Discover-
ing and Representing Search Space Structure. Faculty of
Mathematics and Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a computational
approach to knowledge, observation and communication.
Faculty of Mathematics and Computing Science, TU/e.
2001-02

M. Huisman. Reasoning about Java programs in higher
order logic using PVS and Isabelle. Faculty of Science,
KUN. 2001-03

I.M.M.J. Reymen. Improving Design Processes through
Structured Reflection. Faculty of Mathematics and Com-
puting Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syntax and seman-
tics. Faculty of Sciences, Division of Mathematics and
Computer Science, VUA. 2001-05

R. van Liere. Studies in Interactive Visualization. Faculty
of Natural Sciences, Mathematics and Computer Science,
UvA. 2001-06

A.G. Engels. Languages for Analysis and Testing of Event
Sequences. Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-07

J. Hage. Structural Aspects of Switching Classes. Faculty
of Mathematics and Natural Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analysis of Data in
Environmental Epidemiology: A Case-study into Acute Ef-
fects of Air Pollution Episodes. Faculty of Mathematics
and Natural Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model Checking. Faculty of
Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of concurrency con-
trol and recovery protocols. Faculty of Mathematics and
Computing Science, TU/e. 2001-11

M.D. Oostdijk. Generation and presentation of formal
mathematical documents. Faculty of Mathematics and
Computing Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control: A simulation
approach using χ. Faculty of Mechanical Engineering,
TU/e. 2001-13

D. Bošnački. Enhancing state space reduction techniques
for model checking. Faculty of Mathematics and Comput-
ing Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks for Intelligent Data
Analysis: theoretical and experimental aspects. Faculty
of Mathematics and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specification and Anal-
ysis of Industrial Systems. Faculty of Mathematics and
Computer Science and Faculty of Mechanical Engineer-
ing, TU/e. 2002-02

T. Kuipers. Techniques for Understanding Legacy Soft-
ware Systems. Faculty of Natural Sciences, Mathematics
and Computer Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in Process Algebra.
Faculty of Natural Sciences, Mathematics, and Computer
Science, UvA. 2002-04

R.J. Willemen. School Timetable Construction: Algo-
rithms and Complexity. Faculty of Mathematics and Com-
puter Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verification of Proba-
bilistic, Real-time and Parametric Systems. Faculty of Sci-
ence, Mathematics and Computer Science, KUN. 2002-06

N. van Vugt. Models of Molecular Computing. Faculty of
Mathematics and Natural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guiding and Cost-
Optimality in Model Checking of Timed and Hybrid Sys-
tems. Faculty of Science, Mathematics and Computer Sci-
ence, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Packing. Faculty
of Mathematics and Natural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Filtering: Concepts and
Algorithms. Faculty of Mathematics and Natural Sciences,
UL. 2002-10

M.B. van der Zwaag. Models and Logics for Process
Algebra. Faculty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions of Semantical
Models. Faculty of Sciences, Division of Mathematics and
Computer Science, VUA. 2002-12

L. Moonen. Exploring Software Systems. Faculty of Nat-
ural Sciences, Mathematics, and Computer Science, UvA.
2002-13

J.I. van Hemert. Applying Evolutionary Computation
to Constraint Satisfaction and Data Mining. Faculty of
Mathematics and Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra. Faculty of
Mathematics and Computer Science, TU/e. 2002-15

	Contents
	Acknowledgements
	List of tables
	1. Introduction
	2. Preliminaries from process algebra
	3. Basic probablistic process algebra
	4. Parallel composition and communication
	5. Probabilistic process algebra with discrete time
	6. Abstraction
	7. Applications
	Conclusion
	List of axioms
	Summary
	Samenvatting
	Bibliography
	Titles IPA-series

